Advertisement

Journal of Plant Biology

, Volume 62, Issue 1, pp 61–73 | Cite as

FLOURY ENDOSPERM12 Encoding Alanine Aminotransferase 1 Regulates Carbon and Nitrogen Metabolism in Rice

  • Mingsheng Zhong
  • Xi Liu
  • Feng Liu
  • Yulong Ren
  • Yunlong Wang
  • Jianping Zhu
  • Xuan Teng
  • Erchao Duan
  • Fan Wang
  • Huan Zhang
  • Mingming Wu
  • Yuanyuan Hao
  • Xiaopin Zhu
  • Ruonan Jing
  • Xiuping Guo
  • Ling Jiang
  • Yihua WangEmail author
  • Jianmin WanEmail author
Original Article
  • 7 Downloads

Abstract

Starch is a major storage substance in cereal grains, and starch biosynthesis is a complex process. In order to elucidate regulation of the starch biosynthesis pathway, we screened a series of rice (Oryza sativa L.) endosperm mutants. In this study, we identified a floury white-core endosperm mutant named floury endosperm12 (flo12). The flo12 mutant exhibited loosely packed starch granules and a lower thousand kernel weight compared to wild type. Semithin sections revealed that compound starch grains (SG) in flo12 interior endosperm cells were developed abnormally. Furthermore, amylose content was decreased, while total protein content was significantly increased in flo12 grains. Map-based cloning showed that FLO12 encodes rice alanine aminotransferase 1 (OsAlaAT1). OsAlaAT1 is highly expressed in developing endosperm. Subcellular localization showed that OsAlaAT1 is localized in the cytosol. Moreover, the expression of most starch synthesis-related genes was decreased, while most of the storage protein coding genes had elevated expression levels in the flo12 mutant. In addition, overexpression of the OsAlaAT1 gene increased grain weight. In brief, we demonstrated that OsAlaAT1 regulates carbon and nitrogen metabolism, which provides a new insight for the improvement of rice quality and yield.

Keywords

Alanine aminotransferase 1 Floury endosperm Rice (Oryza sativa L.) Starch synthesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12374_2018_288_MOESM1_ESM.docx (3.8 mb)
Supplementary material, approximately 3877 KB.

References

  1. Cai Y, Li S, Jiao G, Sheng Z, Wu Y, Shao G, Xie L, Peng C, Xu J, Tang S, Wei X, Hu P (2018) OsPK2 encodes a plastidic pyruvate kinase involved in rice endosperm starch synthesis, compound granule formation and grain filling. Plant Biotechnol J 16:1878–1891CrossRefGoogle Scholar
  2. Chen S, Tao L, Zeng L, Vega-Sanchez ME, Umemura K, Wang GL (2006) A highly efficient transient protoplast system for analyzing defence gene expression and protein-protein interactions in rice. Mol Plant Pathol 7:417–427CrossRefGoogle Scholar
  3. Chiu WL, Niwa Y, Zeng W, Hirano T, Kobayashi H, Sheen J (1996) Engineered GFP as a vital reporter in plants. Curr Biol 6:325–330CrossRefGoogle Scholar
  4. Farre EM, Geigenberger P, Willmitzer L, Trethewey RN (2000) A possible role for pyrophosphate in the coordination of cytosolic and plastidial carbon metabolism within the potato tuber. Plant Physiol 123:681–688CrossRefGoogle Scholar
  5. Fu FF, Xue HW (2010) Coexpression analysis identifies Rice Starch Regulator1, a rice AP2/EREBP family transcription factor, as a novel rice starch biosynthesis regulator. Plant Physiol 154:927–938CrossRefGoogle Scholar
  6. Fujita N, Toyosawa Y, Utsumi Y, Higuchi T, Hanashiro I, Ikegami A, Akuzawa S, Yoshida M, Mori A, Inomata K, Itoh R, Miyao A, Hirochika H, Satoh H, Nakamura Y (2009) Characterization of pullulanase (PUL)-deficient mutants of rice (Oryza sativa L.) and the function of PUL on starch biosynthesis in the developing rice endosperm. J Exp Bot 60:1009–1023CrossRefGoogle Scholar
  7. Fujita N, Yoshida M, Asakura N, Ohdan T, Miyao A, Hirochika H, Nakamura Y (2006) Function and characterization of starch synthase I using mutants in rice. Plant Physiol 140:1070–1084CrossRefGoogle Scholar
  8. Fujita N, Yoshida M, Kondo T, Saito K, Utsumi Y, Tokunaga T, Nishi A, Satoh H, Park JH, Jane JL, Miyao A, Hirochika H, Nakamura Y (2007) Characterization of SSIIIa-deficient mutants of rice:the function of SSIIIa and pleiotropic effects by SSIIIa deficiency in the rice endosperm. Plant Physiol 144:2009–2023CrossRefGoogle Scholar
  9. Good AG, Johnson SJ, De Pauw M, Carroll RT, Savidov N, Vidmar J, Lu Z, Taylor G, Stroeher V (2007) Engineering nitrogen use efficiency with alanine aminotransferase. Can J Bot 85:252–262CrossRefGoogle Scholar
  10. Han X, Wang Y, Liu X, Jiang L, Ren Y, Liu F, Peng C, Li J, Jin X, Wu F, Wang J, Guo X, Zhang X, Cheng Z, Wan J (2012) The failure to express a protein disulphide isomerase-like protein results in a floury endosperm and an endoplasmic reticulum stress response in rice. J Exp Bot 63:121–130CrossRefGoogle Scholar
  11. Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–282CrossRefGoogle Scholar
  12. Igarashi D, Miwa T, Seki M, Kobayashi M, Kato T, Tabata S, Shinozaki K, Ohsumi C (2003) Identification of photorespiratory glutamate:glyoxylate aminotransferase (GGAT) gene in Arabidopsis. Plant J 33:975–987CrossRefGoogle Scholar
  13. Ishiyama K, Inoue E, Tabuchi M, Yamaya T, Takahashi H (2004) Biochemical background and compartmentalized functions of cytosolic glutamine synthetase for active ammonium assimilation in rice roots. Plant Cell Physiol 45:1640–1647CrossRefGoogle Scholar
  14. James MG, Robertson DS, Myers AM (1995) Characterization of the maize gene sugary1, a determinant of starch composition in kernels. Plant Cell 7:417–429CrossRefGoogle Scholar
  15. Jeon JS, Ryoo N, Hahn TR, Walia H, Nakamura Y (2010) Starch biosynthesis in cereal endosperm. Plant Physiol Biochem 48:383–392CrossRefGoogle Scholar
  16. Kang HG, Park S, Matsuoka M, An G (2005) White-core endosperm floury endosperm-4 in rice is generated by knockout mutations in the C-type pyruvate orthophosphate dikinase gene (OsPPDKB). Plant J 42:901–911CrossRefGoogle Scholar
  17. Kikuchi H, Hirose S, Toki S, Akama K, Takaiwa F (1999) Molecular characterization of a gene for alanine aminotransferase from rice (Oryza sativa). Plant Mol Biol 39:149–159CrossRefGoogle Scholar
  18. Kubo A, Fujita N, Harada K, Matsuda T, Satoh H, Nakamura Y (1999) The starch-debranching enzymes isoamylase and pullulanase are both involved in amylopectin biosynthesis in rice endosperm. Plant Physiol 121:399–409CrossRefGoogle Scholar
  19. Lee SK, Hwang SK, Han M, Eom JS, Kang HG, Han Y, Choi SB, Cho MH, Bhoo SH, An G, Hahn TR, Okita TW, Jeon JS (2007) Identification of the ADP-glucose pyrophosphorylase isoforms essential for starch synthesis in the leaf and seed endosperm of rice (Oryza sativa L.). Plant Mol Biol 65:531–546CrossRefGoogle Scholar
  20. Liepman AH, Olsen LJ (2003) Alanine aminotransferase homologs catalyze the glutamate:glyoxylate aminotransferase reaction in peroxisomes of Arabidopsis. Plant Physiol 131:215–227CrossRefGoogle Scholar
  21. Liu L, Ma X, Liu S, Zhu C, Jiang L, Wang Y, Shen Y, Ren Y, Dong H, Chen L, Liu X, Zhao Z, Zhai H, Wan J (2009) Identification and characterization of a novel Waxy allele from a Yunnan rice landrace. Plant Mol Biol 71:609–626CrossRefGoogle Scholar
  22. Long W, Wang Y, Zhu S, Jing W, Wang Y, Ren Y, Tian Y, Liu S, Liu X, Chen L, Wang D, Zhong M, Zhang Y, Hu T, Zhu J, Hao Y, Zhu X, Zhang W, Wang C, Zhang W, Wan J (2018) FLOURY SHRUNKEN ENDOSPERM1 Connects Phospholipid Metabolism and Amyloplast Development in Rice. Plant Physiol 177:698–712CrossRefGoogle Scholar
  23. Martin C, Smith AM (1995) Starch biosynthesis. Plant Cell 7:971–985CrossRefGoogle Scholar
  24. Matsushima R, Maekawa M, Kusano M, Tomita K, Kondo H, Nishimura H, Crofts N, Fujita N, Sakamoto W (2016) Amyloplast Membrane Protein SUBSTANDARD STARCH GRAIN6 Controls Starch Grain Size in Rice Endosperm. Plant Physiol 170:1445–1459Google Scholar
  25. McAllister CH, Facette M, Holt A, Good AG (2013) Analysis of the enzymatic properties of a broad family of alanine aminotransferases. PLoS One 8:e55032Google Scholar
  26. Mikami I, Aikawa M, Hirano HY, Sano Y (1999) Altered tissuespecific expression at the Wx gene of the opaque mutants in rice. Euphytica 105:91–97CrossRefGoogle Scholar
  27. Miyashita Y, Dolferus R, Ismond KP, Good AG (2007) Alanine aminotransferase catalyses the breakdown of alanine after hypoxia in Arabidopsis thaliana. Plant J 49:1108–1121CrossRefGoogle Scholar
  28. Nelson OE, Rines HW (1962) The enzymatic deficiency in the waxy mutant of maize. Biochem Biophys Res Commun 9:297–300CrossRefGoogle Scholar
  29. Niessen M, Krause K, Horst I, Staebler N, Klaus S, Gaertner S, Kebeish R, Araujo WL, Fernie AR, Peterhansel C (2012) Two alanine aminotranferases link mitochondrial glycolate oxidation to the major photorespiratory pathway in Arabidopsis and rice. J Exp Bot 63:2705–2716CrossRefGoogle Scholar
  30. Nishi A, Nakamura Y, Tanaka N, Satoh H (2001) Biochemical and Genetic Analysis of the Effects of Amylose-Extender Mutation in Rice Endosperm. Plant Physiol 127:459–472CrossRefGoogle Scholar
  31. Peng C, Wang Y, Liu F, Ren Y, Zhou K, Lv J, Zheng M, Zhao S, Zhang L, Wang C, Jiang L, Zhang X, Guo X, Bao Y, Wan J (2014) FLOURY ENDOSPERM6 encodes a CBM48 domaincontaining protein involved in compound granule formation and starch synthesis in rice endosperm. Plant J 77:917–930CrossRefGoogle Scholar
  32. Qu L, Takaiwa F (2004) Evaluation of tissue specificity and expression strength of rice seed component gene promoters in transgenic rice. Plant Biotechnol J 2:113–125CrossRefGoogle Scholar
  33. Rocha M, Sodek L, Licausi F, Hameed MW, Dornelas MC, van Dongen JT (2010) Analysis of alanine aminotransferase in various organs of soybean (Glycine max) and in dependence of different nitrogen fertilisers during hypoxic stress. Amino Acids 39:1043–1053CrossRefGoogle Scholar
  34. Satoh H, Shibahara K, Tokunaga T, Nishi A, Tasaki M, Hwang SK, Okita TW, Kaneko N, Fujita N, Yoshida M, Hosaka Y, Sato A, Utsumi Y, Ohdan T, Nakamura Y (2008) Mutation of the plastidial alpha-glucan phosphorylase gene in rice affects the synthesis and structure of starch in the endosperm. Plant Cell 20:1833–1849CrossRefGoogle Scholar
  35. She KC, Kusano H, Koizumi K, Yamakawa H, Hakata M, Imamura T, Fukuda M, Naito N, Tsurumaki Y, Yaeshima M, Tsuge T, Matsumoto K, Kudoh M, Itoh E, Kikuchi S, Kishimoto N, Yazaki J, Ando T, Yano M, Aoyama T, Sasaki T, Satoh H, Shimada H (2010) A novel factor FLOURY ENDOSPERM2 is involved in regulation of rice grain size and starch quality. Plant Cell 22:3280–3294CrossRefGoogle Scholar
  36. Shrawat AK, Carroll RT, DePauw M, Taylor GJ, Good AG (2008) Genetic engineering of improved nitrogen use efficiency in rice by the tissue-specific expression of alanine aminotransferase. Plant Biotechnol J 6:722–732CrossRefGoogle Scholar
  37. Son D, Sugiyama T (1992) Molecular cloning of an alanine aminotransferase from NAD-malic enzyme type C4 plant Panicum miliaceum. Plant Mol Biol 20:705–713CrossRefGoogle Scholar
  38. Sonoda Y, Ikeda A, Saiki S, von Wiren N, Yamaya T, Yamaguchi J (2003) Distinct expression and function of three ammonium transporter genes (OsAMT1;1-1;3) in rice. Plant Cell Physiol 44:726–734CrossRefGoogle Scholar
  39. Sun H, Qian Q, Wu K, Luo J, Wang S, Zhang C, Ma Y, Liu Q, Huang X, Yuan Q, Han R, Zhao M, Dong G, Guo L, Zhu X, Gou Z, Wang W, Wu Y, Lin H, Fu X (2014) Heterotrimeric G proteins regulate nitrogen-use efficiency in rice. Nat Genet 46:652–656CrossRefGoogle Scholar
  40. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5:Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Mol Biol Evol 28:2731–2739CrossRefGoogle Scholar
  41. Tamura W, Hidaka Y, Tabuchi M, Kojima S, Hayakawa T, Sato T, Obara M, Kojima M, Sakakibara H, Yamaya T (2010) Reverse genetics approach to characterize a function of NADH-glutamate synthase1 in rice plants. Amino Acids 39:1003–1012CrossRefGoogle Scholar
  42. Tamura W, Kojima S, Toyokawa A, Watanabe H, Tabuchi-Kobayashi M, Hayakawa T, Yamaya T (2011) Disruption of a Novel NADH-Glutamate Synthase2 Gene Caused Marked Reduction in Spikelet Number of Rice. Front Plant Sci 2:57CrossRefGoogle Scholar
  43. Wang JC, Xu H, Zhu Y, Liu QQ, Cai XL (2013) OsbZIP58, a basic leucine zipper transcription factor, regulates starch biosynthesis in rice endosperm. J Exp Bot 11:3453–3466CrossRefGoogle Scholar
  44. Wang YH, Ren YL, Liu X, Jiang L, Chen LM, Han XH, Jin MN, Liu SJ, Liu F, Lv J, Zhou KN, Su N, Bao YQ, Wan JM (2010) OsRab5a regulates endomembrane organization and storage protein trafficking in rice endosperm cells. Plant J 64:812–824CrossRefGoogle Scholar
  45. Yang J, Kim SR, Lee SK, Choi H, Jeon JS, An G (2015) Alanine aminotransferase 1 (OsAlaAT1) plays an essential role in the regulation of starch storage in rice endosperm. Plant Sci 240:79–89CrossRefGoogle Scholar
  46. Zhang L, Ren Y, Lu B, Yang C, Feng Z, Liu Z, Chen J, Ma W, Wang Y, Yu X, Wang Y, Zhang W, Wang Y, Liu S, Wu F, Zhang X, Guo X, Bao Y, Jiang L, Wan J (2016) FLOURY ENDOSPERM7 encodes a regulator of starch synthesis and amyloplast development essential for peripheral endosperm development in rice. J Exp Bot 67:633–647CrossRefGoogle Scholar

Copyright information

© Korean Society of Plant Biologists and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Mingsheng Zhong
    • 1
  • Xi Liu
    • 1
  • Feng Liu
    • 3
  • Yulong Ren
    • 2
  • Yunlong Wang
    • 1
  • Jianping Zhu
    • 1
  • Xuan Teng
    • 1
  • Erchao Duan
    • 1
  • Fan Wang
    • 1
  • Huan Zhang
    • 1
  • Mingming Wu
    • 1
  • Yuanyuan Hao
    • 1
  • Xiaopin Zhu
    • 1
  • Ruonan Jing
    • 1
  • Xiuping Guo
    • 1
  • Ling Jiang
    • 1
  • Yihua Wang
    • 1
    Email author
  • Jianmin Wan
    • 1
    • 2
    Email author
  1. 1.State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
  2. 2.National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
  3. 3.College of Life SciencesNanjing Agricultural UniversityNanjingChina

Personalised recommendations