pp 1–13 | Cite as

Digitization of Fossils from the Fezouata Biota (Lower Ordovician, Morocco): Evaluating Computed Tomography and Photogrammetry in Collection Enhancement

  • Khaoula KouraissEmail author
  • Khadija El Hariri
  • Abderrazak El Albani
  • Abdelfattah Azizi
  • Arnaud Mazurier
  • Bertrand Lefebvre
Original Article


Palaeontological collections housing material from the Fezouata Shale Lagerstätte (Lower Ordovician, Morocco) are of a high scientific interest as they testify to the existence of Burgess Shale-type taxa in one of the most critical Palaeozoic period: the Cambrian–Ordovician transition. The preservation of this unique patrimony can benefit from the emergence of imaging methodologies that have provided innovative ways in three-dimensional (3D) digitization. Computed tomography and photogrammetry were applied in order to create 3D models of fossils from the Fezouata Biota. Tomographic results show the exciting potential of these techniques in internal investigation of fossils, while photogrammetric method enables surface reconstructions with great accuracy in terms of texture, color, and morphology and can be convenient when internal exploration is not required. Three-dimensional digitization techniques thus seem to be reliable methods suited to highlight the potential of palaeontological data housed in museums and make easier the scientific dissemination of information.


Fezouata Collections Computed tomography Photogrammetry 



The authors acknowledge Pr. Fabrice Monna (University of Burgundy, Dijon) for the valuable discussion about the photogrammetric software. Pr. Abel Prieur is deeply thanked for the database software handling. Special thanks go also to Youssef Taib, Najib Akka, and Fatim-zahra Ihbach for the kind help with specimen photography, as well as to the anonymous reviewer of the MS, for his constructive and helpful comments. Agisoft Photoscan team is also thanked to have provided us the License Key. We thank the PLATeforme INstrumentale d’Analyse of the IC2MP for the access to the microCT device of the University of Poitiers. Finally, the French region La Nouvelle Aquitaine and the FEDER are also thanked here for their support.

Funding Information

We are grateful to The Académie Hassan II des Sciences et Techniques (Morocco) that largely funded this work. This paper is an outcome of the cooperation program VALORIZ (2012-2015) funded by both the CNRST and the CNRS.

Supplementary material

12371_2019_403_MOESM1_ESM.rar (143.6 mb)
ESM 1 (RAR 147003 kb)


  1. Anderson JS, Carroll RL, Rowe TB (2003) New information on Lethiscus stocki (Tetrapoda: Lepospondyli: Aistopoda) from high-resolution computed tomography and a phylogenetic analysis of Aistopoda. Can J Earth Sci 40(8):1071–1083CrossRefGoogle Scholar
  2. Balzeau A, Grimaud-Hervé D, Crevecoeur I, Rougier H, Froment A, Gilissen E, Mennecier P, Semal P (2010) Applications des méthodes d’imagerie en paléoanthropologie: apports en termes de préservation, gestion et développement des collections. Comptes Rendus - Palevol 9(6–7):265–275CrossRefGoogle Scholar
  3. Bates K, Falkingham P, Hodgetts D, Farlow JO, Breithaupt BH, O’Brien M, Matthews N, Sellers WI, Manning PL (2009) Digital imaging and public engagement in palaeontology. Geol Today 25(4):134–139CrossRefGoogle Scholar
  4. Bates K, Falkingham P, Rarity F, Hodgetts D, Purslow A, Manning PL (2010) Application of high-resolution laser scanning and photogrammetric techniques to data acquisition, analysis and interpretation in palaeontology. Int Arch Photogramm Remote Sens Spat Inf Sci XXXVIII(5):68–73Google Scholar
  5. Bidola P, Stockmar M, Achterhold K, Pfeiffer F, Pacheco ML, Soriano C, Beckmann F, Herzen J (2015) Absorption and phase contrast X-ray imaging in paleontology using laboratory and synchrotron sources. Microsc Microanal 21:1288–1295CrossRefGoogle Scholar
  6. Boyer DM, Gunnell GF, Kaufman S, McGeary TM (2017) Morphosource: archiving and sharing 3-D digital specimen data. Paleontol Soc Pap 22:157–181CrossRefGoogle Scholar
  7. Bradley RD, Bradley LC, Garner HJ, Baker RJ (2014) Assessing the value of natural history collections and addressing issues regarding long-term growth and care. BioSciences 64(13):1150–1158CrossRefGoogle Scholar
  8. Brett CE, Moffat HA, Taylor WL (1997) Echinoderm taphonomy, taphofacies, and Lagersta¨tten. Paleontol Soc Pap 3:147–190CrossRefGoogle Scholar
  9. Carlson WD, Rowe T, Ketcham R, Colbert MW (2003) Applications of high-resolution X-ray computed tomography in petrology, meteoritics and palaeontology. Geol Soc Spec Publ 215:7–22CrossRefGoogle Scholar
  10. Cnudde V, Boone MN (2013) High-resolution X-ray computed tomography in geosciences: a review of the current technology and applications. Earth Sci Rev 123:1–17CrossRefGoogle Scholar
  11. Cunningham JA, Rahman IA, Lautenschlager S, Rayfield EJ, Donoghue PC (2014) A virtual world of paleontology. Trends Ecol Evol 29(6):347–357CrossRefGoogle Scholar
  12. De Paor DG (2016) Virtual Rocks. GSA Today 26(8):4–11CrossRefGoogle Scholar
  13. Dierick M, Cnudde V, Masschaele B, Vlassenbroeck J, Van Hoorebeke L, Jacobs P (2007) Micro-CT of fossils preserved in amber. Nucl Instrum Methods Phys Res Sect A 580(1 SPEC. ISS.):641–643CrossRefGoogle Scholar
  14. Ebbestad JOR, Lefebvre B (2015) An unusual onychochilid mollusc from the Ordovician (Tremadocian) Fezouata formation, Morocco. Geobios 48(6):427–438CrossRefGoogle Scholar
  15. El Albani A, Bengtson S, Canfield DE, Bekker A, Macchiarelli R, Mazurier A, Hammarlund EU, Boulvais P, Dupuy J-J, Fontaine C, Fürsich FT, Gauthier-Lafaye F, Janvier P, Javaux E, Ossa FO, Pierson-Wickmann A-C, Riboulleau A, Sardini P, Vachard D, Whitehouse M, Meunier A (2010) Large colonial organisms with coordinated growth in oxygenated environments 2.1 Gyr ago. Nature 466:100–104CrossRefGoogle Scholar
  16. El Albani A, Mangano MG, Buatois LA, Bengtson S, Riboulleau A, Bekker A et al (2019) Organism motility in an oxygenated shallow-marine environment 2.1 billion years ago. Proc Natl Acad Sci 116(9):3431–3436CrossRefGoogle Scholar
  17. Evin A, Souter T, Hulme-Beaman A, Ameen C, Allen R, Viacava P, Larson G, Cucchi T, Dobney K (2016) The use of close-range photogrammetry in zooarchaeology: creating accurate 3D models of wolf crania to study dog domestication. J Archaeol Sci Rep 9:87–93Google Scholar
  18. Falkingham PL (2012) Acquisition of high resolution three-dimensional models using free, open-source, photogrammetric software. Palaeontol Electron 15(1):1–15Google Scholar
  19. Fau M, Cornette R, Houssaye A (2016) Apport de la photogrammétrie à la numérisation 3D d’os de spécimens montés : potentiel et limites. Comptes Rendus - Palevol 15(8):968–977CrossRefGoogle Scholar
  20. Gaspard D (2013) X-ray computed tomography: a promising tool to investigate the brachiopod shell interior. Effects on 3D modelling and taxonomy. Comptes Rendus - Palevol 12(3):149–158CrossRefGoogle Scholar
  21. Goswami A (2015) Phenome10K: a free online repository for 3-D scans of biological and palaeontological specimens. Accessed April 2019
  22. Gutiérrez-Marco JC, García-Bellido DC, Rábano I, Sá AA (2017) Digestive and appendicular soft-parts, with behavioural implications, in a large Ordovician trilobite from the Fezouata Lagerstätte, Morocco. Sci Rep 7:39728CrossRefGoogle Scholar
  23. Hann G, Mao F, Bi S, Wang Y, Meng J (2017) A Jurassic gliding euharamiyidan mammal with an ear of five auditory bones. Nature 551:451–456CrossRefGoogle Scholar
  24. Kak AC, Slaney M (2001) Principles of computed tomography imaging. SIAM (Society for Industrial and Applied Mathematics, Philadelphia 327 pCrossRefGoogle Scholar
  25. Kersten T P, Lindstaedt M (2012) Image-based low-cost Systems for Automatic 3D recording and modelling of archaeological finds and objects. In : Proceedings of Euromediterranean conference, 1–10Google Scholar
  26. Ketcham RA, Carlson WD (2001) Acquisition, optimization and interpretation of x-ray computed tomographic imagery: applications to the geosciences. Comput Geosci 27(4):381–400CrossRefGoogle Scholar
  27. Koromyslova AV, Pakhnevich AV (2016) New species of Pachydermopora Gordon, 2002 and Beisselina Canu, 1913 (Bryozoa: Cheilostomida) from a Campanian erratic block (Belarus) and their micro-CT investigation. Paleontol J 50(1):41–53CrossRefGoogle Scholar
  28. Koromyslova AV, Pakhnevich AV, Martha SO (2018) Summary of micro-CT studies on late cretaceous bryozoans. In: Abstr. Bruker micro-CT users meeting, Ghent: 160–164Google Scholar
  29. Kouraiss K, El Hariri K, El Albani A, Azizi A, Mazurier A, Vannier J (2018) X-ray microtomography applied to fossils preserved in compression: Palaeoscolescid worms from the lower Ordovician Fezouata shale. Palaeogeogr Palaeoclimatol Palaeoecol 508:48–58CrossRefGoogle Scholar
  30. Kröger B, Lefebvre B (2012) Palaeogeography and palaeoecology of early Floian (early Ordovician) cephalopods from the upper Fezouata formation, anti-atlas, Morocco. Fossil Record 15(2):61–75CrossRefGoogle Scholar
  31. Kwan DH, Kwan JM (2017) Empowering cultural preservation in China through participatory digitization. J Archaeol Sci Rep 12:161–164Google Scholar
  32. Lautenschlager S (2014) Palaeontology in the third dimension: a comprehensive guide for the integration of three-dimensional content in publications. Paläontol Z 88(1):111–121CrossRefGoogle Scholar
  33. Lebrun R, Orliac MJ (2017) Morphomuseum: an online platform for publication and storage of virtual specimens. Paleontol Soc Pap 22:183–195CrossRefGoogle Scholar
  34. Lefebvre B, Guensburg TE, Martin E, Milne CH, Mooi R, Noailles F, Vannier J (2013) Soft-part preservation in a solutan echinoderm from the Fezouata biota (lower Ordovician, Morocco). Abstr 57th Ann Meeting Palaeont Ass, Zurich, pp. 44–45Google Scholar
  35. Lefebvre B, El Hariri K, Kouraïss K, Martin E, Noailles F (2014) Préservation exceptionnelle de parties molles chez des échinodermes stylophores de l'Ordovicien inférieur de la région de Zagora (Anti-Atlas central, Maroc). J Assoc Paléontol Fr 66:42Google Scholar
  36. Lefebvre B, El Hariri K, Lerosey-Aubril R, Servais T, Van Roy P (2016a) The Fezouata shale (lower Ordovician, anti-atlas, Morocco): a historical review. Palaeogeogr Palaeoclimatol Palaeoecol 460:7–23CrossRefGoogle Scholar
  37. Lefebvre B, Lerosey-Aubril R, Servais T, Van Roy P (2016b) The Fezouata biota: an exceptional window on the Cambro-Ordovician faunal transition. Palaeogeogr Palaeoclimatol Palaeoecol 460:1–6CrossRefGoogle Scholar
  38. Lefebvre B, Allaire N, Guensburg TE, Hunter AW, Kouraïss K, Martin ELO, Nardin E, Noailles F, Pittet B, Sumrall CD, Zamora S (2016c) Palaeoecological aspects of the diversification of echinoderms in the lower Ordovician of central anti-atlas, Morocco. Palaeogeogr Palaeoclimatol Palaeoecol 460:97–121CrossRefGoogle Scholar
  39. Lefebvre B, Guensburg TE, Martin ELO, Mooi R, Nardin E, Nohejlová M, Saleh F, Kouraïss K, El Hariri K, David B (2019) Exceptionally preserved soft pars in fossils from the lower Ordovician of Morocco clarify stylophoran affinities within basal deuterostomes. Geobios 52:27–36CrossRefGoogle Scholar
  40. Li XQ, An CZ, Zhang LT, Jia D (2016) Construction and accuracy test of a 3D model of non-metric camera images using Agisoft PhotoScan. Procedia Environ Sci 36:184–190CrossRefGoogle Scholar
  41. Mallison H, Wings O (2014) Photogrammetry in paleontology - a practical guide. Journal of Paleontological Techniques 12(12):1–31Google Scholar
  42. Martin E, Pittet B, Gutiérrez-Marco JC, Lefebvre B, Vannier J, El Hariri K, LeroseyAubril R, Masrour M, Nowak H, Servais T, Vandenbroucke T, Van Roy P, Vaucher R (2016) The lower Ordovician Fezouata Konservat-Lagerstätte from Morocco: age, environment and evolutionary perspectives. Gondwana Res 34:274–283CrossRefGoogle Scholar
  43. Mazurier A, Sardini P, Rossi AM, Graham RC, Hellmuth K-H, Parneix JC, Siitari-Kauppi M, Voutilainen M, Caner L (2016) Development of a fractcture network in crystalline rocks during weathering: study of Bischop Creek chronosequence using X-ray computed tomography and 14C-PMMA impregnation method. Geol Soc Am Bull 128(9–10):1423–1438CrossRefGoogle Scholar
  44. Meyer M, Elliott D, Wood AD, Polys NF, Colbert M, Maisano JA, Vickers-Rich P, Hall M, Hoffman KH, Schneider G, Xiao S (2014) Three-dimensional microCT analysis of the Ediacara fossil Pteridinium simplex sheds new light on its ecology and phylogenetic affinity. Precambrian Res 249:79–87CrossRefGoogle Scholar
  45. Milroy A, Rozefelds AC, Coghlan S, Holmes A, Hocknull S (2015) Digitising the collection evaluating photogrammetry as a means of producing a digital, three-dimensional model. J Nat Sci Illus 47:3–10Google Scholar
  46. Petti F, Avanzini M, Belvedere M, De Gasperi M, Ferretti P, Girardi S, Remondino F, Tomasoni R (2008) Digital 3D modelling of dinosaur footprints by photogrammetry and laser scanning techniques: integrated approach at the Coste dell’Anglone tracksite (lower Jurassic, southern Alps, northern Italy). Studi Trentini Di Scienze Naturali. Acta Geol 83:303–315Google Scholar
  47. Racicot R (2016) Fossils secret revealed: x-ray scanning and applications in paleontology. Paleontol Soc Pap 22:21–38CrossRefGoogle Scholar
  48. Reid M, Bordy EM, Taylor WL, le Roux S.G. du Plessis A (2018) A micro X-ray computed tomography dataset of fossil echinoderms in an ancient obrution bed: a robust method for taphonomic and palaeoecologic analyses. GigaScience, giy156Google Scholar
  49. Remondino F, El Hakim S (2006) Image-based 3D modelling: a review. Photogramm Rec 21(115):269–291CrossRefGoogle Scholar
  50. Stock SR (2009) MicroComputed tomography: methodology and applications. CRC Press, Boca Raton 331 pGoogle Scholar
  51. Sutton MD (2008) Tomographic techniques for the study of exceptionally preserved fossils. Proc R Soc B 275:1587–1593CrossRefGoogle Scholar
  52. Sutton M, Rahman I, Garwood R (2016) Virtual paleontology—an overview. Paleontol Soc Pap 22:1–20CrossRefGoogle Scholar
  53. Taforeau P, Boistel R, Boller E, Bravin A, Brunet M, Chaimanee Y, Cloetens P, Feist J, Hoszowska J, Jaeger J-J, Kay RF, Lazzari L, Marivaux L, Nel A, Nemoz C, Thibault X, Vignaud P, Zabler S (2006) Applications of X-ray synchrotron microtomography for non-destructive 3D studies of paleontological specimens. Appl Phys Mater Sci Process 83(2):195–202CrossRefGoogle Scholar
  54. Tate JR, Cann CE (1982) High-resolution computed tomography for the comparative study of fossil and extant bone. Am J Phys Anthropol 58(1):67–73CrossRefGoogle Scholar
  55. Van Roy P, Orr PJ, Botting JP, Muir LA, Vinther J, Lefebvre B, El Hariri K, Briggs DEG (2010) Ordovician faunas of burgess shale type. Nature 465(7295):215–218CrossRefGoogle Scholar
  56. Van Roy P, Briggs DEG, Gaines RR (2015) The Fezouata fossils of Morocco; an extraordinary record of marine life in the early Ordovician. J Geol Soc 172(5):541–549CrossRefGoogle Scholar
  57. Vinther J, Parry L, Briggs DE, Van Roy P (2017) Ancestral morphology of crown-group molluscs revealed by a new Ordovician stem aculiferan. Nature 542(7642):471–474CrossRefGoogle Scholar
  58. Wilson JP, Varricchio, DJ (2019) Photogrammetry of the Oryctodromeus cubicularis type locality burrow and the utility of preexisting, standard field photographs for three dimensional digital reconstruction. Hist Biol: 1–8Google Scholar

Copyright information

© The European Association for Conservation of the Geological Heritage 2019

Authors and Affiliations

  • Khaoula Kouraiss
    • 1
    Email author
  • Khadija El Hariri
    • 1
  • Abderrazak El Albani
    • 2
  • Abdelfattah Azizi
    • 1
  • Arnaud Mazurier
    • 2
  • Bertrand Lefebvre
    • 3
  1. 1.Département des sciences de la terre, Faculté des Sciences et TechniquesUniversité Cadi-AyyadMarrakeshMorocco
  2. 2.Institut IC2MP UMR CNRS 7285 (HydrASA)Université de PoitiersPoitiers CedexFrance
  3. 3.UMR CNRS 5276Université Lyon 1Villeurbanne CedexFrance

Personalised recommendations