Advertisement

Geoheritage

pp 1–11 | Cite as

Walking in the Streets of Pisa to Discover the Stones Used in the Middle Ages

  • Marco LezzeriniEmail author
  • Stefano Pagnotta
  • Stefano Legnaioli
  • Vincenzo Palleschi
Original Article
Part of the following topical collections:
  1. Geoheritage: the foundation for sustainable geotourism

Abstract

This paper deals with the stones used as building materials in the centre of Pisa during the Middle Age. Most of the stones are quarried from the nearby mountains, Monte Pisano and Monti d’Oltre Serchio, but there are also other ones, coming from Apuan Alps, Elba Island, western Tuscan coast, and from other quarries opened in the Western Mediterranean area. Our goal is to enrich the classic concept of street photography by inserting, in an interpretative context, the analysis and the observation of the geoenvironment in which we are immersed, daily, for the journey home-office, home-school or just for a simple walk. The tools we have are the eyes, the light and an instrument: the camera. Five stops along a city route allow to describe the main types of stones that have been used to construct and ornate the buildings since the 10th and 11th centuries, when Pisa acquired its traditional fame as one of the four historical Maritime Republics of Italy. Monte Pisano marble is the most important stone in the medieval phase of construction of the city of Pisa, often used together with black limestones to give the typical decorative alternate bands, black and white, of the Pisan Romanesque style. Other types of stones were also used, such as Quartzites, Agnano breccia, Panchina, Macigno sandstone as well as Apuan marble, granitoid rocks from Elba Island and Sardinia, and some rocks from ancient quarries of the western Mediterranean area, such as precious marbles from Greece and Turkey.

Keywords

Building stone Marble Urban geology Cultural heritage Tuscany Italy 

Notes

Acknowledgements

We would like to thank Marcello Spampinato for the stone sampling.

Funding Information

This work was financially supported by PRA_2018_41-Georisorse e Ambiente.

References

  1. Alberti A, Paribeni E (2012) Archeologia in Piazza dei Miracoli. Gli scavi 2003–2009. PisaGoogle Scholar
  2. Amorosi A, Bini M, Giacomelli S, Pappalardo M, Ribecai C, Rossi V, Sammartino I, Sarti G (2013) Middle to late Holocene environmental evolution of the Pisa coastal plain (Tuscany, Italy) and early human settlements. Quat Int 303:93–106.  https://doi.org/10.1016/j.quaint.2013.03.030 CrossRefGoogle Scholar
  3. Antonelli F, Lazzarini L (2015) An updated petrographic and isotopic reference database for white marbles used in antiquity. Rend Lincei 26:399–413.  https://doi.org/10.1007/s12210-015-0423-4 CrossRefGoogle Scholar
  4. Attanasio D, Brilli M, Bruno M (2008) The properties and identification of marble from proconnesos (Marmara Island, Turkey): a new database including isotopic, EPR and petrographic data. Archaeometry 50:747–774.  https://doi.org/10.1111/j.1475-4754.2007.00364.x CrossRefGoogle Scholar
  5. Attanasio D, Brilli M, Ogle N (2006) The isotopic signature of classical marbles. L’ERMA‘ di Bretschneider, RomaGoogle Scholar
  6. Bandini A, Berry P (2013) Influence of marble’s texture on its mechanical behavior. Rock Mech Rock Eng 46:785–799.  https://doi.org/10.1007/s00603-012-0315-1 CrossRefGoogle Scholar
  7. Baracchini C, Pini R, Fabiani F, Ciafaloni M, Siano S, Sabatini G, Giamello M, Franzini M, Lezzerini M (2005) The pilot restoration yard of the Church of San Frediano: results of a multidisciplinary study. In: Dickmann K, Fotakis C, Asmus JF (eds) Lasers in the conservation of artworks. Springer Proceedings in Physics, vol 100. Springer, Berlin, Heidelberg, pp 191–197Google Scholar
  8. Barsottelli M, Fratini F, Giorgetti G et al (1998) Microfabric and alteration in Carrara marble: a preliminary study. Sci Technol Cult Herit 7:115–126Google Scholar
  9. Bini M, Rossi V, Amorosi A, Pappalardo M, Sarti G, Noti V, Capitani M, Fabiani F, Gualandi ML (2015) Palaeoenvironments and palaeotopography of a multilayered city during the Etruscan and Roman periods: early interaction of fluvial processes and urban growth at Pisa (Tuscany, Italy). J Archaeol Sci 59:197–210.  https://doi.org/10.1016/j.jas.2015.04.005 CrossRefGoogle Scholar
  10. Boccaletti M, Ficcarelli G, Manetti P, Turi A (1969) Analisi stratigrafiche, sedimentologiche e petrografiche delle formazioni Mesozoiche della Val di Lima. Mem Soc Geol It 847–922Google Scholar
  11. Bralia A, Ceccherini S, Fratini F, del Fa CM, Mellini M, Sabatini G (1995) Anomalous water absorption in low-grade serpentinites: more water than space? Eur J Mineral 7:205–215CrossRefGoogle Scholar
  12. Brandi G (1964) La bibliografia scientifica riguardante le formazioni del Verrucano s.l. in Toscana (dal 1818 al 1963). Atti Soc Tosc Sci Nat, Mem, Ser A 288–316Google Scholar
  13. Cantisani E, Canova R, Fratini F et al (2000) Relationships between microstructures and physical properties of white Apuan marbles: inferences on weathering durability. Period di Mineral 69:257–268Google Scholar
  14. Cantisani E, Fratini F, Malesani P, Molli G (2005) Mineralogical and petrophysical characterisation of white Apuan marble. Period di Mineral 74:117–138Google Scholar
  15. Cantisani E, Pecchioni E, Fratini F, Garzonio CA, Malesani P, Molli G (2009) Thermal stress in the Apuan marbles: relationship between microstructure and petrophysical characteristics. Int J Rock Mech Min Sci 46:128–137.  https://doi.org/10.1016/j.ijrmms.2008.06.005 CrossRefGoogle Scholar
  16. Capedri S, Venturelli G (2004) Accessory minerals as tracers in the provenancing of archaeological marbles, used in combination with isotopic and petrographic data. Archaeometry 46:517–536.  https://doi.org/10.1111/j.1475-4754.2004.00171.x CrossRefGoogle Scholar
  17. Capedri S, Venturelli G, Photiades A (2004) Accessory minerals and δ18O and δ13C of marbles from the Mediterranean area. J Cult Herit 5:27–47.  https://doi.org/10.1016/j.culher.2003.03.003 CrossRefGoogle Scholar
  18. Carosi R, Montomoli C (1999) Relations between folds and stretching lineations in the Verrucano of Pisani Mounts (northern Apennines). Comptes Rendus l’Académie des Sci - Ser IIA - Earth Planet Sci.  https://doi.org/10.1016/S1251-8050(99)80150-5 CrossRefGoogle Scholar
  19. Coli M, Fazzuoli M (1992) Lithostratigraphy and sedimentary evolution of the Triassic-Liassic terrains of the Apuan Alps metamorphic core complex. Atti Ticinensi di Sci della Terra, Italy, pp 43–60Google Scholar
  20. Craig H, Craig V (1972) Greek marbles: determination of provenance by isotopic analysis. Science (80) 176:401–403.  https://doi.org/10.1126/science.176.4033.401 CrossRefGoogle Scholar
  21. Deneke E, Günther K (1981) Petrography and arrangement of tertiary graywacke and sandstone sequences of the northern Apennines. Sediment Geol 28:189–230.  https://doi.org/10.1016/0037-0738(81)90065-8 CrossRefGoogle Scholar
  22. Di Battistini G, Rapetti C (2003) Pietra ornamentale e da costruzione nella Lunigiana. Arenaria, ParmaGoogle Scholar
  23. Fabiani P, Mennucci A, Nenci C (1997) Indagini sui paramenti murari esterni del Duomo di Pisa: rapporto preliminare. In: Sauro Gelichi (ed) I Congresso Nazionale di Archeologia Medievale. All’Insegna del Giglio, FirenzeGoogle Scholar
  24. Franceschelli M, Leoni L, Memmi I, Puxeddu M (1986) Regional distribution of Al-silicates and metamorphic zonation in the low-grade Verrucano metasediments from the northern Apennines, Italy. J Metamorph Geol 4:309–321.  https://doi.org/10.1111/j.1525-1314.1986.tb00353.x CrossRefGoogle Scholar
  25. Franceschelli M, Leoni L, Sartori F (1987) Geochemistry and mineralogy of detritic rocks from Verrucano type-sequences of northern Apennines (Monti Pisani and Punta Bianca). Italy Rend Soc It Miner Pet 42:13–31Google Scholar
  26. Franzini M (1993) Le pietre toscane nell’edilizia medievale della città di Pisa. Mem Soc Geol It 49:233–244Google Scholar
  27. Franzini M (1995) Stones in monuments: natural and anthropogenic deterioration of marble artifacts. Eur J Mineral 7:735–743.  https://doi.org/10.1127/ejm/7/4/0735 CrossRefGoogle Scholar
  28. Franzini M, Lezzerini M (1998a) Le pietre dell’edilizia medievale pisana e lucchese (Toscana occidentale). 2. I calcari selciferi del Monte Pisano. Atti Soc Tosc Sci Nat, Mem. Ser A 105:1–8Google Scholar
  29. Franzini M, Lezzerini M (1998b) Palazzo Gambacorti: le pietre del paramento. In: Palazzo Gambacorti a Pisa. Un restauro in cantiere. Electa Napoli, NAPOLI, pp 230–234Google Scholar
  30. Franzini M, Lezzerini M (2002) The stones of medieval buildings in Pisa and Lucca (Western Tuscany, Italy). 4 - “Agnano breccias” from Mt. Pisano. Eur J Mineral 14:447–451.  https://doi.org/10.1127/0935-1221/2002/0014-0447 CrossRefGoogle Scholar
  31. Franzini M, Lezzerini M (2003) The stones of medieval buildings in Pisa and Lucca provinces (western Tuscany, Italy). 1-The Monte Pisano marble. Eur J Mineral 15:217–224.  https://doi.org/10.1127/0935-1221/2003/0015-0217 CrossRefGoogle Scholar
  32. Franzini M, Lezzerini M, Mannela L (2001) The stones of medieval buildings in Pisa and Lucca (Western Tuscany, Italy). 3-Green and white-pink quartzites from Mt. Pisano. Eur J Mineral 13:187–195.  https://doi.org/10.1127/0935-1221/01/0013-0187 CrossRefGoogle Scholar
  33. Franzini M, Gioncada A, Lezzerini M (2007a) Le pietre dell’edilizia medievale pisana e lucchese (Toscana occidentale). 5 - La Maiolica e il Nummulitico della Bassa Valle del fiume Serchio. Atti Soc Tosc Sci Nat Mem Ser A 112:9–19Google Scholar
  34. Franzini M, Leoni L, Lezzerini M, Cardelli R (2007b) Relationships between mineralogical composition, water adsorption and hydric dilatation in the “Macigno” sandstones from Lunigiana (Massa, Tuscany). Eur J Mineral 19:113–123.  https://doi.org/10.1127/0935-1221/2007/0019-0113 CrossRefGoogle Scholar
  35. Franzini M, Lezzerini M, Origlia F (2010) Marbles from the Campiglia Marittima area (Tuscany, Italy). Eur J Mineral 22:881–893.  https://doi.org/10.1127/0935-1221/2010/0022-2056 CrossRefGoogle Scholar
  36. Fratini F, Rescic S (2014) The stone materials of the historical architecture of Tuscany, Italy. Geol Soc Lond Spec Publ 391:71 LP–71 92.  https://doi.org/10.1144/SP391.5 CrossRefGoogle Scholar
  37. Gagnevin D, Daly JS, Poli G (2008) Insights into granite petrogenesis from quantitative assessment of the field distribution of enclaves, xenoliths and K-feldspar megacrysts in the Monte Capanne pluton, Italy. Mineral Mag 72:925–940.  https://doi.org/10.1180/minmag.2008.072.4.925 CrossRefGoogle Scholar
  38. Gagnevin D, Daly JS, Poli G (2004) Petrographic, geochemical and isotopic constraints on magma dynamics and mixing in the Miocene Monte Capanne monzogranite (Elba Island, Italy). Lithos 78:157–195CrossRefGoogle Scholar
  39. Garzella G (2003) Pisa: la forma urbana e gli impianti portuali sul fiume. In: Tangheroni M (ed) Pisa e il Mediterraneo. Uomini, merci, idee dagli Etruschi ai Medici. Pisa, pp 150–155Google Scholar
  40. Gattiglia G (2014) Mappa. Pisa in the middle ages: archaeology, spatial analysis and predictive modeling. Edizioni Nuova CulturaGoogle Scholar
  41. Giamello M, Guasparri G, Neri R, Sabatini G (1992) Building materials in Siena architecture: type, distribution and state of conservation. Sci Technol Cult Herit 1:55–65Google Scholar
  42. Giannini E, Nardi R (1965) Geologia della zona nord-occidentale del Monte Pisano e dei Monti d’Oltre Serchio (Prov. di Pisa e Lucca). Boll Soc Geol It 198–270Google Scholar
  43. Gioncada A, Leoni L, Lezzerini M, Miriello D (2011) Relationships between mineralogical and textural factors in respect to hydric dilatation of some sandstones and meta-sandstones from the northern Apennine. Ital J Geosci 130:394–403.  https://doi.org/10.3301/IJG.2011.16 CrossRefGoogle Scholar
  44. Gorgoni C, Lazzarini L, Pallante P, Turi B (2002) An updated and detailed mineropetrographic and CO stable isotopic reference database for the main Mediterranean marbles used in antiquity. AsmosiaGoogle Scholar
  45. Herz N (1987) Carbon and oxygen isotopic ratios: a Data Base for classical Greek and Roman marble. Archaeometry 29:35–43.  https://doi.org/10.1111/j.1475-4754.1987.tb00395.x CrossRefGoogle Scholar
  46. Herz N (1988) The oxygen and carbon isotopic data base for classical marble. NATO ASI Ser Ser E, Appl Sci 153:305–314Google Scholar
  47. Herz N, Dean NE (1986) Stable isotopes and archaeological geology: the Carrara marble, northern Italy. Appl Geochem 1:139–151.  https://doi.org/10.1016/0883-2927(86)90045-4 CrossRefGoogle Scholar
  48. Leoni L, Lezzerini M, Battaglia S, Cavalcante F (2010) Corrensite and chlorite-rich Chl-S mixed layers in sandstones from the “Macigno” formation (northwestern Tuscany, Italy). Clay Miner 45:87–106.  https://doi.org/10.1180/claymin.2010.045.1.87 CrossRefGoogle Scholar
  49. Leoni L, Montomoli C, Carosi R (2009) Il metamorfismo dele unità tettoniche dei Monti Pisani (Appenino setentrionale). Atti Soc Tosc Sci Nat Mem Ser A 114:61–73Google Scholar
  50. Lezzerini M (2005) Mappatura delle pietre presenti nella facciata della chiesa di San Frediano (Pisa, Italia). Atti Soc Tosc Sci Nat Mem Ser A 110:43–50Google Scholar
  51. Lezzerini M, Antonelli F, Columbu S, Gadducci R, Marradi A, Miriello D, Parodi L, Secchiari L, Lazzeri A (2016) Cultural heritage documentation and conservation: three-dimensional (3D) laser scanning and geographical information system (GIS) techniques for thematic mapping of facade stonework of St. Nicholas church (Pisa, Italy). Int J Archit Herit 10:9–19.  https://doi.org/10.1080/15583058.2014.924605 CrossRefGoogle Scholar
  52. Lezzerini M, Antonelli F, Gallello G, Ramacciotti M, Parodi L, Alberti A, Pagnotta S, Legnaioli S, Palleschi V (2017) Provenance of marbles used for building the internal spiral staircase of the bell tower of St. Nicholas church (Pisa, Italy). Appl Phys A Mater Sci Process 123:385.  https://doi.org/10.1007/s00339-017-0998-y CrossRefGoogle Scholar
  53. Lezzerini M, Di Battistini G, Zucchi D, Miriello D (2012) Provenance and compositional analysis of marbles from the medieval Abbey of San Caprasio, Aulla (Tuscany, Italy). Appl Phys A Mater Sci Process 108:475–485.  https://doi.org/10.1007/s00339-012-6917-3 CrossRefGoogle Scholar
  54. Lezzerini M, Franzini M, Di Battistini G, Zucchi D (2008) The «Macigno» sandstone from Matraia and Pian di Lanzola quarries (north-western Tuscany, Italy ). A comparison of physical and mechanical properties. Atti Soc Tosc Sci Nat Mem Ser A 113:71–79Google Scholar
  55. Pandeli E, Ferrini G, Lazzari D (1994) Lithofacies and petrography of the Macigno Formation from the Abetone to the Monti del Chianti areas (Northern Apennines). In: Proceedings of the 76th summer meeting of the Società Geologica Italiana; The Northern Apennines; Part 1, The Tuscan Nappe, the ophiolitic sequences, the turbiditic successionsGoogle Scholar
  56. Perrone V, Martín-Algarra A, Critelli S, Decandia FA, D’Errico M, Estevez A, Iannace A, Lazzarotto A, Martín-Martín M, Martín-Rojas I, Mazzoli S, Messina A, Mongelli G, Vitale S, Zaghloul MN (2006) Verrucano’ and ‘Pseudoverrucano’ in the Central-Western Mediterranean alpine chains: palaeogeographical evolution and geodynamic significance. Geol Soc Lond Spec Publ 262:1–43.  https://doi.org/10.1144/GSL.SP.2006.262.01.01 CrossRefGoogle Scholar
  57. Poli G, Peccerillo A (2016) The Upper Miocene magmatism of the island of Elba (Central Italy): compositional characteristics, petrogenesis and implications for the origin of the Tuscany Magmatic Province. Mineral Petrol 110:421–445.  https://doi.org/10.1007/s00710-016-0426-6 CrossRefGoogle Scholar
  58. Poretti G, Brilli M, De Vito C et al (2017) New considerations on trace elements for quarry provenance investigation of ancient white marbles. J Cult Herit 28:16–26.  https://doi.org/10.1016/j.culher.2017.04.008 CrossRefGoogle Scholar
  59. Ramacciotti M, Spampinato M, Lezzerini M (2015) The building stones of the apsidal walls of the pisa’s cathedral. Atti Soc Tosc Sci Nat Mem Ser A 122:55–62.  https://doi.org/10.2424/ASTSN.M.2015.20
  60. Rau A, Tongiorgi M (1974) Geologia dei Monti Pisani a Sud-Est della Valle del Guappero. Mem Soc Geol It 13:227–408Google Scholar
  61. Rodolico F (1964) Le pietre delle città d’Italia, 2nd edn. Le Monnier, FirenzeGoogle Scholar
  62. Rowland ID, Howe TN, Dewar MJ (2014) Vitruvius: ‘ten books on architecture.’ Cambridge University PressGoogle Scholar
  63. Shushakova V, Fuller ER, Heidelbach F, Mainprice D, Siegesmund S (2013) Marble decay induced by thermal strains: simulations and experiments. Environ Earth Sci 69:1281–1297.  https://doi.org/10.1007/s12665-013-2406-z CrossRefGoogle Scholar
  64. Tedeschi G (1992) Il granito dell’Elba a Pisa: uso e riuso nell’XI e XII secolo. In: Colombo (ed) Niveo de Marmore. Genova, pp 43–51Google Scholar
  65. Tolaini E (1992) Forma Pisarum. PisaGoogle Scholar
  66. Tongiorgi M, Rau A, Martini IP (1977) Sedimentology of early-alpine, fluvio-marine, clastic deposits (Verrucano, Triassic) in the Monti Pisani (Italy). Sediment Geol 17:311–332.  https://doi.org/10.1016/0037-0738(77)90051-3 CrossRefGoogle Scholar
  67. Tucker J (2012) Eye on the street: photography in urban public spaces. Radic Hist Rev 2012:7–18CrossRefGoogle Scholar
  68. van de Kamp PC, Leake BE (1995) Petrology and geochemistry of siliciclastic rocks of mixed feldspathic and ophiolitic provenance in the northern Apennines, Italy. Chem Geol 122:1–20.  https://doi.org/10.1016/0009-2541(94)00162-2 CrossRefGoogle Scholar
  69. Waelkens M, Paepe P, Moens L (1988) Quarries and the marble trade in antiquity. In: Classical marble: geochemistry, technology, trade. pp 11–28CrossRefGoogle Scholar
  70. Wigoder M (2001) Some thoughts about street photography and the everyday. Hist Photogr 25:368–378CrossRefGoogle Scholar

Copyright information

© The European Association for Conservation of the Geological Heritage 2019

Authors and Affiliations

  1. 1.Department of Earth SciencesUniversity of PisaPisaItaly
  2. 2.Applied and Laser Spectroscopy Laboratory, Research Area of National Research CouncilInstitute of Chemistry of Organometallic CompoundsPisaItaly
  3. 3.Department of Civilization and Form of KnowledgeUniversity of PisaPisaItaly

Personalised recommendations