Advertisement

Geoheritage

, Volume 11, Issue 3, pp 855–873 | Cite as

Volcanic Geosites and Their Geoheritage Values Preserved in Monogenetic Neogene Volcanic Field, Bahariya Depression, Western Desert, Egypt: Implication for Climatic Change-Controlling Volcanic Eruption

  • Ezz El Din Abdel Hakim KhalafEmail author
  • Mohamed Abdel Wahed
  • Azeeza Maged
  • Hesham Mokhtar
Original Article

Abstract

Bahariya monogenetic volcanic field is characterized by important geomorphological features (geomorphosites), namely, sub-circular maar-tuff ring, scoria cones, and domal-shaped tumuli. These geomorphosites constitute an asset for geoeducation, geotourism and miscellaneous social activities. They offer important knowledge into the paleoenvironmental and climatic factors that affected the style of volcanism at the occasion, and eventually shaped the diverse landforms found in the volcanic field. Bahariya Oasis is exclusive for its excellent locations where many volcanic heritages of high value give evidence of phreatomagmatic and effusive-controlled phases which formed volcanic landscapes under humid to dry climate. The geoheritage and archeological sites of early settlements are abundant in the Bahariya Oasis, accentuating the scientific magnitude of this region. There have been seven geosites recognized such as (1) the scoria cone, (2) the lava flows and their surface morphological features, (3) the pseudopillow fractures, (4) columnar joints, (5) peperites, (6) tumuli, and (7) rootless cones. These geosites coupled with other unique sites define the Oasis as global geopark. The latter will consider as an excellent logistical network to endorse volcanic geosciences and raise the economic growth in this part of Bahariya Oasis. The diverse geological characteristics at the Bahariya make this area a high volcanic geodiversity that can be used for geoeducational programs and geotourism. Excursions and research programs carried out by universities will contribute to enhanced geoconservation for local sustainable development. Currently, in the Bahariya region, tourism is not well developed, but it is recommended that, roads be improved to give better accessibility to the geomorphosites, and interpretative panels, informative brochures, multi-media presentations, seminars and workshops, scientific lectures, and postcards be produced to inform tourists about the geology of the region.

Keywords

Volcanic geoheritage Scoria/rootless cones Tuff ring Maar Pahoehoe lava flows Peperites Columnar joints Tumuli 

References

  1. Afify AM, Sanz-Montero ME, Clavo JP, Wanas HA (2015) Diagenetic origin of ironstone crusts in the lower cenomanian bahariya formation, bahariya depression, western desert, Egypt. J Afr Earth Sci 101:333–349CrossRefGoogle Scholar
  2. Anderson SW, Embley RW, Fink JH (1999) Crease structures: indicators of emplacement rates and surface stress regimes of lava flows. Geol Soc Am Bull 104:615–625CrossRefGoogle Scholar
  3. Badman T (2010) World heritage and geomorphology. In: Migoń P (ed) Geomorphological landscapes of the world. Springer, Dordrecht, pp 357–368Google Scholar
  4. Bitschene P, Schueller A (2011) Geo-education and geopark implementation in the Vulkaneifel European Geopark. GSA Field Guide 22:29–34Google Scholar
  5. Bradbury J (2014) A keyed classification of natural geodiversity for land management and nature conservation purposes. Proc Geol Assoc 125:329–349CrossRefGoogle Scholar
  6. Brocx M, Semeniuk V (2007) Geoheritage and geoconservation history, definition,scope, and scale. J Roy Soc W Aust 90:53–87Google Scholar
  7. Brocx M, Semeniuk V (2009) Developing a tool-kit for geoheritage and geoconservation in Western Australia. ProGeo News 2009(1):5–9Google Scholar
  8. Brocx M, Semeniuk V (2011) Assessing geoheritage values: a case study using Leschenault Peninsula and its estuarine lagoon, southwestern Australia. Proc Linnean Soc NSW 132:115–130Google Scholar
  9. Budkewitsch P, Robin PY (1994) Modelling the evolution of columnar joints. J Volcanol Geotherm Res 59:219–239CrossRefGoogle Scholar
  10. Camp VE, Roobol MJ, Hooper PR (1992) The Arabian continental alkali basalt province. 3. Evolution of Harrat Kishb, Kingdom of Saudi-Arabia. Geol Soc Am Bull 104(4):379–396CrossRefGoogle Scholar
  11. Carracedo Sánchez M, Sarrionandia F, Juteau T, Gil Ibarguchi JI (2012) Structure and organization of submarine basaltic flows: sheet flow transformation into pillow lavas in shallow submarine environments. Geol Rundsch 101:2201–2214CrossRefGoogle Scholar
  12. Catuneanu O, Khalifa MA, Wanas HA (2006) Sequence stratigraphy of the lower cenomanian bahariya formation, bahariya oasis, western desert, Egypt. Sediment Geol 190:121–137CrossRefGoogle Scholar
  13. Chitwood LA (1994) Inflated basaltic lava—examples of processes and landforms from central and southeast Oregon. Or Geol 56:11–21Google Scholar
  14. De A (1996) Entablature structure in Deccan Trap flows: its nature and probable mode of origin. Gond Geol Mag 2:439–447Google Scholar
  15. DeGraff J, Long P, Aydin A (1989) Use of joint-growth directions and rock textures to infer thermal regimes during solidification of basaltic lava flows. J Volcanol Geotherm Res 38:309–324CrossRefGoogle Scholar
  16. Dingwall P, Weighell T, Badman T (2005) Geological world heritage: a global framework. IUCN, GlandGoogle Scholar
  17. Dixon G (1996) Geoconservation: an international review and strategy for Tasmania. Miscellaneous Report, Hobart, Tas. Parks and Wildlife Service, TasmaniaGoogle Scholar
  18. Duraiswami RA, Bondre NR, Dole G (2004) Possible lava tube system in a hummocky lava flew at Daund, western Deccan Volcanic Province, India. Ind Acad of Earth Planet Sci 113:819–829Google Scholar
  19. El Aref MM, El Sharkawi MA, Khalil MA (1999) Geology and genesis of the stratabound and stratiform Cretaceous-Eocene iron ore deposits of the Bahariya region, Western Desert, Egypt. In: GAW 4th International Conference. Cairo University, Egypt, 450–475Google Scholar
  20. El Aref MM, Mesaed AA, Khalil MA, Salama WS (2006) Stratigraphic setting, facies analyses and depositional environments of the Eocene ironstones of Gabal Ghorabi mine area, El Bahariya Depression, Western Desert, Egypt. Egypt. J Geol 50:29–57Google Scholar
  21. Erfurt-Cooper P (2011) Geotourism in volcanic and geothermal environments: playing with fire? Geoheritage 3(3):187–193CrossRefGoogle Scholar
  22. Erikstad L (2013) Geoheritage and geodiversity management—the questions for tomorrow. Proc Geol Assoc 124:713–719CrossRefGoogle Scholar
  23. Fagents SA, Thordarson T (2007) Rootless volcanic cones in Iceland and on Mars. The geology of Mars. Cambridge University Press, Cambridge, pp 151–177Google Scholar
  24. Fagents SA, Lanagan P, Greeley R (2002) Rootless cones on Mars: a consequence of lava-ground ice interaction. Volcano–Ice Interaction on Earth and Mars. Geol Soc Lond, Spec Publ 202:295–317.  https://doi.org/10.1144/GSL.SP.2002.202.01.15 CrossRefGoogle Scholar
  25. Forbes AES, Blake S, McGarvie DW, Tuffen H (2012) Pseudopillow fracture systems in lavas: insights into cooling mechanisms and environments from lava flow fractures. J Volcanol Geotherm Res 245–246:68–80CrossRefGoogle Scholar
  26. Glaze LS, Anderson SW, Stofan ER, Baloga S, Smrekar SE (2005) Statistical distribution of tumuli on pahoehoe flow surfaces: analysis of examples in Hawaii and Iceland and potential applications to lava flows on Mars. J Geophys Res Solid Earth 110(B8)Google Scholar
  27. Gontareva EF, Ansari MK, Ruban DA, Ahmad M, Singh TN (2015) Geological dimension of the cultural heritage: a case example of the Ajanta Caves (Maharashtra, India). Cad do Lab Xeol_oxico Laxe 38:67–78Google Scholar
  28. Greeley R, Fagents SA (2001) Icelandic pseudocraters as analogs to some volcanic cones on Mars. J Geophys Res 106(E9):20527–20546CrossRefGoogle Scholar
  29. Guiraud R, Bosworth W, Thierry J, Delplanque A (2005) Phanerozoic geological evolution of Northern and Central Africa: an overview. J Afr Earth Sci 43:83–143CrossRefGoogle Scholar
  30. Gutmann JT (1976) Geology of Crater Elegante, Sonora, Mexico. Geol Soc Am Bull 87:1718–1729CrossRefGoogle Scholar
  31. Gutmann JT (2002) Strombolian and effusive activity as precursors to phreatomagmatism; eruptive sequence at maars of the Pinacate volcanic field, Sonora, Mexico. J Volcanol Geotherm Res 113(1–2):345–356CrossRefGoogle Scholar
  32. Harris AJL (2009) The pit-craters and pit-crater-filling lavas of Masaya volcano. Bull Volcanol 71(5):541–558CrossRefGoogle Scholar
  33. Helba AA, El Aref MM, Saad F (2001) Lutetian oncoidal and ooidal ironstone sequence; depositional setting and origin; northeast El Bahariya Depression, Western Desert, Egypt. Egypt J Geol 45(1A):325–351Google Scholar
  34. Henriques MH, Neto K (2015) Geoheritage at the equator: selected geosites of saoTome island (Cameron line, Central Africa). Sustainability 7:648–667CrossRefGoogle Scholar
  35. Hon K, Kauahikaua J, Denlinger R, McKay K (1994) Emplacement and inflation of pahoehoe sheet flows—observation and measurements of active lavas on Kilauea volcano, Hawaii. Geol Soc Am Bull 106:351–370CrossRefGoogle Scholar
  36. Hooper C (1997) Structures, textures, and cooling histories of Columbia River basaltic flows. Geol Soc Am Bull 97:1144–1155Google Scholar
  37. Iron Exploration Project (IEP) (1993–1997) Cairo Univ. And EGSMA, Phase I-III Internal Reports. Cairo Univ Fac.of Sci., Geol.Dept., report I (1993–1994, 147p), report II (1994–1995, 161p), report III (1995–1997, 287p)Google Scholar
  38. Issawi B, Francis M, Youssef A, Osman R (2009) The Phanerozoic of Egypt: a geodynamic approach. Geological Survey of Egypt, Cairo, p 589Google Scholar
  39. Jones C (2008a) History of geoparks. Geol Soc Lond Spec Publ 300:37–60 http://sp.lyellcollection.org/content/300/1/273.abstract. Accessed 28 Jan 2011CrossRefGoogle Scholar
  40. Jones C (2008b) Towards a history of geotourism: definitions, antecedents and the future. Geol Soc Lond Spec Publ 300:37–60CrossRefGoogle Scholar
  41. Kereszturi G, Németh K (2012) Monogenetic basaltic volcanoes: genetic classification, growth, geomorphology and degradation. In: Németh K (ed) Updates in volcanology—new advances in understanding volcanic systems. inTech Open, Rijeka, pp 3–88.  https://doi.org/10.5772/51387 Google Scholar
  42. Kereszturi G, Csillag G, Nemeth K, Sebe K, Balogh K, Jager V (2010) Volcanic architecture, eruption mechanism and landform evolution of a Plio/Pleistocene intracontinental basaltic polycyclic monogenetic volcano from the Bakony-Balaton Highland Volcanic Field, Hungary. Cent Eur J Geosci 2(3):362–384Google Scholar
  43. Kereszturi G, Németh K, Csillag G, Balogh K, Kovács J (2011) The role of external environmental factors in changing eruption styles of monogenetic volcanoes in a Mio/Pleistocene continental volcanic field in western Hungary. J Volcanol Geotherm Res 201(1–4):227–240CrossRefGoogle Scholar
  44. Kereszturi G, Jordan G, Németh K, Doniz-Paez JF (2012) Syn-eruptive morphometric variability of monogenetic scoria cones. Bull Volcanol 74(9):2171–2185CrossRefGoogle Scholar
  45. Keszthelyi L, Thordarson T (2000) Rubbly Pahoehoe: a previously undescribed but widespread lava type transitional between aa and pahoehoe. Geol Soc Amer, Abstracts and Programs, v.32,no.7, Abs.No.52593Google Scholar
  46. Khalaf EA, Hammad MS (2016) Morphology and development of pahoehoe flow-lobe tumuli and associated features from a monogenetic basaltic volcanic field, Bahariya Depression, Western Desert, Egypt. J Afr Earth Sci 113:165–180CrossRefGoogle Scholar
  47. Khalaf EA, Abdel Motelib A, Hammed MS, El Manawi AH (2015) Volcanosedimentary characteristics in the Abu Treifiya Basin, Cairo-Suez District, Egypt: example of dynamics and fluidization over sedimentary and volcaniclastic beds by emplacement of syn-volcanic basaltic rocks. J Volcanol Geotherm Res 308:158–178CrossRefGoogle Scholar
  48. Klitzsch E, List FK, Pohlmann G, Handley R, Hermina M, Meissner H (1986) Geological map of Egypt: 1:50,000 scale, 20 sheets. Conco/Egyptian General Petroleum Corporation, CairoGoogle Scholar
  49. Klitzsch E, List FK, Pohlmann G, Handley R, Hermina M, Meissner G (1987) Geological map of Egypt: 1:50,000 scale, 20 sheets. Conoco/Egyptian General Petroleum Corporation, CairoGoogle Scholar
  50. Lodge R, Lescinsky D (2009) Fracture patterns at lava-ice contacts on Kokostick Butte, OR, and Mazama Ridge, Mount Rainier, WA: implications for flow emplacement and cooling histories. J Volcanol Geotherm Res 185(4):298–310CrossRefGoogle Scholar
  51. Long P, Wood B (1986) Structures, textures, and cooling histories of Columbia River basalt flows. Geol Soc Am Bull 97(9):1144–1155CrossRefGoogle Scholar
  52. Lorenz V (1986) On the growth of maars and diatremes and its relevance to the formation of tuff rings. Bull Volcanol 48:265–274CrossRefGoogle Scholar
  53. Lyle P (2000) The eruption environment of multi-tiered columnar basalt lava flows. J Geol Soc Lond 157:715–722CrossRefGoogle Scholar
  54. McClintock MK, White JDL, Houghton BF, Skilling IP (2008) Physical volcanology of a large crater complex formed during the initial stages of Karoo flood basalt volcanism, Sterkspruit, Eastern Cape, South Africa. J Volcanol Geotherm Res 172:92–111CrossRefGoogle Scholar
  55. McPhie J, Doyle M, Allen R (1993) Volcanic textures: a guide to the interpretation of textures in volcanic rocks. Centre for Ore Deposit and Exploration Studies, University of Tasmania, Hobart (198 pp)Google Scholar
  56. Mee K, Tuffen H, Gilbert J (2006) Snow-contact volcanic facies and their use in determining past eruptive environments at Nevados de Chillan volcano, Chile. Bull Volcanol 68:363–376CrossRefGoogle Scholar
  57. Meneisy MY (1990) Vulcanicity. In: Said R (ed) The geology of Egypt. A.A. Balkema, Rotterdam, pp 157–172 (Chapter 9)Google Scholar
  58. Meneisy MY, Abdel Aal AY (1983) Geochronology of Phanerozoic volcanic rocks in Egypt. Bull Fac Sci 25:163–176Google Scholar
  59. Meneisy MY, El Kalioubi B (1975) Isotopic ages of the volcanic rocks of the Bahariya Oasis. Ann Geol Surv Egypt 5:119–122Google Scholar
  60. Moroni A, Gnezdilova VV, Ruban DA (2015) Geological heritage in archaeological sites: case examples from Italy and Russia. Proc Geol Assoc 126:244–251CrossRefGoogle Scholar
  61. Moufti M, Nemeth K, ElMasry N, Qaddah A (2015) Volcanic geotopes and their geosites preserved in an arid climate related to landscape and climate changes since the neogene in Northern Saudi Arabia: Harrat Hutaymah (Hai’il Region). Geoheritage 7:103–118CrossRefGoogle Scholar
  62. Moustafa AR, Saoudi A, Ibrahim IM, Molokhia H, Schwartz B (2003) Geoarabian, Bahrain. Structural setting and tectonic evolution of the Bahariya Depression, Western Desert, Egypt 8:91–124Google Scholar
  63. Needham AJ, Lindsay JM, Smith IEM, Augustinus P, Shane PA (2011) Sequential eruption of alkaline and sub-alkaline magmas from a small monogenetic volcano in the Auckland Volcanic Field, New Zealand. J Volcanol Geotherm Res 201(1–4):126–142CrossRefGoogle Scholar
  64. Németh K (2010) Monogenetic volcanic fields: origin, sedimentary record, and relationship with polygenetic volcanism. In: Canon-Tapia E, Szakacs A (eds) What is a volcano? Geological Society of America, Boulder, pp 43–66CrossRefGoogle Scholar
  65. Németh K, White JDL (2003) Intra-vent peperites related to the phreatomagmatic volcano, Waipiata, New Zealand. J Volcanol Geotherm Res 183:30–41CrossRefGoogle Scholar
  66. Németh K, Cronin SJ (2008) Volcanic craters, pit craters and high-level magma-feeding systems of a mafic island-arc volcano: Ambrym, Vanuatu, South Pacific. In: Thomson K, Petford N (eds) Structure and emplacement of high-level magmatic systems. Geol Soci Lond, pp 85–99Google Scholar
  67. Németh K, Martin U, Harangi S (2001) Miocene phreatomagmatic volcanismat Tihany (Pannonian Basin, Hungary). J Volcanol Geotherm Res 111(1–4):111–135CrossRefGoogle Scholar
  68. Németh K, Haller MJ, Martin U, Rossi C, Massafero G (2008) Morphology of lava tumuli from Mendoza, Patagonia (Argentina) and Al-Haruy (Libya). Zeitschrift fuer Geomorphologie 52:181–194CrossRefGoogle Scholar
  69. Németh K, Casadevall T, Moufti MR, Marti J (2017) Volcanic geoheritage. BV 9:251–254Google Scholar
  70. Noguchi R, Hoskuldsson A, Kurita K (2016) Detailed topographical, distributional, and material analyses of rootless cones in Myvatn, Iceland. J Volcanol Geotherm Res 318:89–102CrossRefGoogle Scholar
  71. Ollier CD (2012) Problems of geotourism and geodiversity. Quaest Geog 31(3):57–61CrossRefGoogle Scholar
  72. Panizza M, Piacente S (1993) Geomorphological assets evaluation. Zeit fur Geomorph 87:13–18Google Scholar
  73. Panizza M, Piacente S (2003) Geomorfologiaculturale. Pitagora Editrice, Bologna 350 pGoogle Scholar
  74. Parfitt EA, Wilson L (1995) Explosive volcanic eruptions - IX. The transition between Hawaiian-style lava fountaining and Strombolian explosive activity. Geophys J Int 121:226–232CrossRefGoogle Scholar
  75. Pasquare` F, Tibaldi A (2007) Structure of a sheet-laccolith system revealing the interplay between tectonic and magma stresses at Stardalur Volcano, Iceland. J Volcanol Geotherm Res 161:131–150CrossRefGoogle Scholar
  76. Plysnina E, Sallam E, Ruban D (2016) Geological heritage of the Bahariya and Farafra oases, the central Western Desert, Egypt. J Afr Earth Sci 116:151–159CrossRefGoogle Scholar
  77. Prosser CD (2013) Our rich and varied geoconservation portfolio: the foundation for the future. Proc Geol Assoc 124:568–580CrossRefGoogle Scholar
  78. Quaranta G (1993) Geomorphological assets: conceptual aspect and application in the area of Crodo da Lago (Cortina d’Ampezzo, Dolomites). In: Panizza M, Soldati M, Barani D (eds) European intensive course on applied geomorphology. Proceedings, Modena—Cortina d’Ampezzo, 24 June–3 July 1992, pp 49–60Google Scholar
  79. Risso C, Németh K, Combina AM, Nullo F, Drosina M (2008) The role of phreatomagmatism in a Plio-Pleistocene high-density scoria cone field: Llancanelo Volcanic Field (Mendoza), Argentina. J Volcanol Geotherm Res 169(1–2):61–86CrossRefGoogle Scholar
  80. Roobol MJ, Camp VE (1996) The “whaleback” flows of Saudi Arabia; giant basaltic lava flows propagating across a low-angle surface to form chains of rootless shield volcanoes. Contrib Econ Geol Res Unit 56:62–63Google Scholar
  81. Ruban DA (2015) Geotourism e a geographical review of the literature. Tour Manag Perspect 15:1–15CrossRefGoogle Scholar
  82. Said R (1962) The geology of Egypt. ElseviersciItd, Amsterdam, p 337Google Scholar
  83. Salama W, El Aref MM, Gaupp R (2014) Facies analysis and palaeoclimatic significance of ironstones formed during the Eocene greenhouse. Sedimentology 61:1594–1624CrossRefGoogle Scholar
  84. Scheidegger AE (1978) The tectonic significance of joints in the Canary Islands. Rock Mech 11:69–85CrossRefGoogle Scholar
  85. Sehim A (1993) Cretaceous tectonics in Egypt. J Geol 37:335–372Google Scholar
  86. Self S, Keszthelyi L, Thordarson T (1998) The importance of pahoehoe. Annu Rev Earth Planet Sci 26:81–110CrossRefGoogle Scholar
  87. Sharples EB (2002) Australie geoheritage history of study, a new inventory of geosites and applications to geotourism and geoparks. Geoheritage 2:39–56Google Scholar
  88. Sheth HC, Duraiswami RA, Umrikar B (2004) The emplacement of pahoehoe lavas on Kileuea and Deccan traps. J Earth Sys Sci 115:615–626CrossRefGoogle Scholar
  89. Showstack R (2015) New commission aims to protect volcanic geoheritage. EOS 96.  https://doi.org/10.1029/2015EO032343
  90. Skilling IP, White JDL, McPhie J (2002) Peperite: a review of magma-sediment mingling. In: Skilling IP,White JDL, McPhie J (eds) Peperite: processes and products of magma-sediment mingling. J Volcanol Geotherm Res Vol 114:1–17Google Scholar
  91. Sohn YK (1996) Hydrovolcanic processes forming basaltic tuff rings and cones on Cheiyu Island, Korea. Geol Soc Am Bull 108:1199–1211CrossRefGoogle Scholar
  92. Sohn YK, Chough SK (1992) The IIchulbong tuff cone, Cheju Island,South Korea. Sedimentology 39(4):523–544CrossRefGoogle Scholar
  93. Stoppa F (1996) The San Venanzo maar and tuff ring, Umbria, Italy: eruptive behaviour of a carbonatite-melilitite volcano. Bull Volcanol 57(7):563–577Google Scholar
  94. Stoppa F, Rosatelli G, SchiazzaM TA (2012) Hydrovolcanic vs magmatic processes in forming maars and associated pyroclasts: the Calatrava—Spain—case history. In: Stoppa F (ed) Updates in volcanology. INTECH, Rijeka, pp 3–26Google Scholar
  95. Tawadros E (2011) Geology of North Africa. CRC Press, London, p 930CrossRefGoogle Scholar
  96. Thorarinsson S (1953) The crater groups in Iceland. Bull Volcanol 2:1–44Google Scholar
  97. Tucker D, Scott K (2009) Structures and facies associated with the flow of subaerial basaltic lava into a deep freshwater lake: the Sulphur Creek lava flow, North Cascades, Washington. J Volcanol Geotherm Res 185(4):311–322CrossRefGoogle Scholar
  98. Valentine GA, Gregg TKP (2008) Continental basaltic volcanoes; processes and problems. J Volcanol Geotherm Res 177(4):857–873CrossRefGoogle Scholar
  99. Van Otterloo J, Cas RAF, Scutter CR (2015) The fracture behaviour of volcanic glass and relevance to quench fragmentation during formation of hyaloclastite and phreatomagmatism. Earth Sci Rev 151:79–116CrossRefGoogle Scholar
  100. Vergniolle S, Mangan MT. (2000) Hawaiian and strombolian eruptions. In: Sigurdsson H, Houghton B, Rymer H, Stix J, McNutt S (eds) Encyclopedia of Volcanoes, pp 447–461Google Scholar
  101. Vespermann D, Schmincke HU, Somner CA (2000) Scoria cones and tuff rings. In: Sigurdsson H, Houghton BF, McNutts SR, Rymer H, Stix Y (eds) Encyclopedia of volcanoes. Academic press, San Diego, pp 683–694Google Scholar
  102. Walker GPL (1991) Basaltic volcano system. Geol Soc Landon Spec Publ 76:3–38CrossRefGoogle Scholar
  103. White JDL (1990) Maar-diatreme phreatomagmatism at Hopi Buttes, Navajo Nation (Arizona), USA. Bull Volcanol 53:239–258CrossRefGoogle Scholar
  104. White JDL (1991) Maar-diatreme phreatomagmatism at Hopi Buttes, Navajo Nation (Arizona), USA. Bull Volcanol 53:239–258CrossRefGoogle Scholar
  105. White JDL, Houghton M (2000) Impure coolant and interaction dynamics of phreatomagmatic eruptions. J Volcanol Geotherm Res 74:155–170CrossRefGoogle Scholar
  106. White JDL, Ross P-S (2011) Maar-diatreme volcanoes; a review. J Volcanol Geotherm Res 201(1–4):1–29CrossRefGoogle Scholar
  107. White JDL, McPhie J, Skilling IP (2000) Peperite: a useful genetic term. Bull Volcanol 62:65–66CrossRefGoogle Scholar
  108. White JDL, Bryan SE, Ross PS, Self S, Thordarson T (2009) Physical volcanology of continental large igneous provinces: update and review. In: Thordarson T, Self S, Larsen G, Rowland SK, Hoskuldsson A (eds) Studies in volcanology. The legacy of George Walker. Special publications of IAVCEI,pp, pp 1–321Google Scholar
  109. Wilmoth RA, Walker GPL (1993) P-type and S-type pahoehoe: a study of vesicle distribution patterns in Hawaiian lava flows. J Volcanol Geotherm Res 55:129–142CrossRefGoogle Scholar
  110. Wimbledon WAP, Smith-Meyer S (2012) Geoheritage in Europe and its conservation. ProGEO, Oslo, p 405Google Scholar
  111. Wood C (2009) World heritage volcanoes: thematic study. IUCN, GlandGoogle Scholar
  112. Zangmo Tefogoum G, Kagou Dongmo A, Nkouathio DG, Wandji P, Gountie Dedzo M (2014) Geomorphological features of the Manengouba Volcano (Cameroon Line): assets for potential geopark development. Geoheritage 6:225–239CrossRefGoogle Scholar

Copyright information

© The European Association for Conservation of the Geological Heritage 2018

Authors and Affiliations

  • Ezz El Din Abdel Hakim Khalaf
    • 1
    Email author
  • Mohamed Abdel Wahed
    • 1
  • Azeeza Maged
    • 1
  • Hesham Mokhtar
    • 1
  1. 1.Faculty of Science, Geology DepartmentCairo UniversityGizaEgypt

Personalised recommendations