Advertisement

Upper-Limb Tele-Rehabilitation System with Force Sensorless Dynamic Gravity Compensation

  • P. A. Diluka HarischandraEmail author
  • A. M. Harsha S. Abeykoon
Article
  • 11 Downloads

Abstract

Tele-rehabilitation provides remote physiotherapy services for patients who have limited access to hospitals. This paper proposes a sensorless tele-rehabilitation system for the upper-limb using two robots in master–slave configuration. The system provides a transparent haptic feeling between the therapist and the patient by simultaneous tracking of both position and torque. The torque is measured using the reaction torque observer. Furthermore, an online recursive numerical parameter estimation method is proposed to identify the gravity disturbance in bilateral teleoperation. The system automatically estimates the parameters using the reaction torque observer output’s data while the therapist is delivering remote physiotherapy services. The estimated gravity torque is compensated in the system as an improvement of the transparency of the teleoperated system. Therefore the therapist would feel only the abnormalities of the patient’s arm. Estimated parameters automatically update the system and enhance the performance. The proposed method was practically verified with a master slave tele-rehabilitation system. Results suggest the applicability of the proposed method.

Keywords

Tele-rehabilitation Gravity compensation Online parameter estimation Reaction torque observer Disturbance observer Improvement of transparency 

Notes

References

  1. 1.
    Plautz EJ, Milliken GW, Nudo RJ (2000) Effects of repetitive motor training on movement representations in adult squirrel monkeys: role of use versus learning. Neurobiol Learn Mem 74(1):27CrossRefGoogle Scholar
  2. 2.
    Stucki G, Stier-Jarmer M, Grill E, Melvin J (2005) Rationale and principles of early rehabilitation care after an acute injury or illness. Disabil Rehabil 27(7–8):353CrossRefGoogle Scholar
  3. 3.
    Babaiasl M, Mahdioun SH, Jaryani P, Yazdani M (2016) A review of technological and clinical aspects of robot-aided rehabilitation of upper-extremity after stroke. Disabil Rehabil Assist Technol 11(4):263Google Scholar
  4. 4.
    Prange GB, Jannink MJ, Groothuis-Oudshoorn CG, Hermens HJ, IJzerman MJ (2006) Systematic review of the effect of robot-aided therapy on recovery of the hemiparetic arm after stroke. J Rehabil Res Dev 43(2):171CrossRefGoogle Scholar
  5. 5.
    Volpe B, Krebs H, Hogan N, Edelstein L, Diels C, Aisen M (2000) A novel approach to stroke rehabilitation robot-aided sensorimotor stimulation. Neurology 54(10):1938CrossRefGoogle Scholar
  6. 6.
    Cherry CO, Chumbler NR, Richards K, Huff A, Wu D, Tilghman LM, Butler A (2017) Expanding stroke telerehabilitation services to rural veterans: a qualitative study on patient experiences using the robotic stroke therapy delivery and monitoring system program. Disabil Rehabil Assist Technol 12(1):21CrossRefGoogle Scholar
  7. 7.
    Zhang S, Guo S, Gao B, Hirata H, Ishihara H (2015) Design of a novel telerehabilitation system with a force-sensing mechanism. Sensors 15(5):11511CrossRefGoogle Scholar
  8. 8.
    Park HS, Peng Q, Zhang LQ (2008) A portable telerehabilitation system for remote evaluations of impaired elbows in neurological disorders. IEEE Trans Neural Syst Rehabil Eng 16(3):245CrossRefGoogle Scholar
  9. 9.
    Song A, Wu C, Ni D, Li H, Qin H (2016) One-therapist to three-patient telerehabilitation robot system for the upper limb after stroke. Int J Soc Robot 8(2):319CrossRefGoogle Scholar
  10. 10.
    Song A, Pan L, Xu G, Li H (2015) Adaptive motion control of arm rehabilitation robot based on impedance identification. Robotica 33(9):1795CrossRefGoogle Scholar
  11. 11.
    Just F, Özen Ö, Tortora S, Riener R, Rauter G (2017) Feedforward model based arm weight compensation with the rehabilitation robot ARMin. In: Rehabilitation robotics (ICORR), 2017 international conference on, IEEE, pp 72–77Google Scholar
  12. 12.
    Moubarak S, Pham MT, Moreau R, Redarce T (2010) Gravity compensation of an upper extremity exoskeleton. In: Engineering in medicine and biology society (EMBC), 2010 annual international conference of the IEEE, IEEE, pp 4489–4493Google Scholar
  13. 13.
    Ugurlu B, Nishimura M, Hyodo K, Kawanishi M, Narikiyo T (2015) Proof of concept for robot-aided upper limb rehabilitation using disturbance observers. IEEE Trans Hum Mach Syst 45(1):110CrossRefGoogle Scholar
  14. 14.
    Abeykoon AHS, Ruwanthika RM (2016) Remote gripping for effective bilateral teleoperation. In: Handbook of research on human–computer interfaces, developments, and applications, IGI Global, pp 99–134Google Scholar
  15. 15.
    Takei T, Shimono T, Kubo R, Nishi H, Ohnishi K (2008) Gravity compensation for improvement of operationarity in bilateral teleoperation. IEEJ Trans Ind Appl 128(6):767–774CrossRefGoogle Scholar
  16. 16.
    Nishimura K, Ohnishi K (2006) Gravity estimation and compensation of grasped object for bilateral teleoperation. In: Advanced motion control, 2006. 9th IEEE international workshop on, IEEE, pp 72–77Google Scholar
  17. 17.
    El Kalam AA, Ferreira A, Kratz F (2016) Bilateral teleoperation system using QoS and secure communication networks for telemedicine applications. IEEE Syst J 10(2):709CrossRefGoogle Scholar
  18. 18.
    Just F, Baur K, Riener R, Klamroth-Marganska V, Rauter G (2016) Online adaptive compensation of the ARMin Rehabilitation Robot. In: Biomedical robotics and biomechatronics (BioRob), 2016 6th IEEE international conference on, IEEE, pp 747–752Google Scholar
  19. 19.
    Katsura S, Matsumoto Y, Ohnishi K (2007) Modeling of force sensing and validation of disturbance observer for force control. IEEE Trans Ind Electron 54(1):530CrossRefGoogle Scholar
  20. 20.
    Mizuochi M, Tsuji T, Ohnishi K (2006) Improvement of disturbance suppression based on disturbance observer. In: 9th IEEE international workshop on advanced motion control, 2006, IEEE, pp 229–234Google Scholar
  21. 21.
    Perera GA, Pillai MB, Harsha A, Abeykoon S (2014) DC motor inertia estimation for robust bilateral control. In: Information and automation for sustainability (ICIAfS), 2014 7th international conference on, IEEE, pp 1–7Google Scholar
  22. 22.
    Ohnishi K, Matsui N, Hori Y (1994) Estimation, identification, and sensorless control in motion control system. Proc IEEE 82(8):1253CrossRefGoogle Scholar
  23. 23.
    Chinthaka MD, Abeykoon AHS (2015) Friction compensation of DC motors for precise motion control using disturbance observer. ECTI Trans Comput Inf Technol (ECTI-CIT) 9(1):74Google Scholar
  24. 24.
    Ohnishi K, Shibata M, Murakami T (1996) Motion control for advanced mechatronics. IEEE/ASME Trans Mechatron 1(1):56CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Industrial Systems EngineeringAsian Institute of TechnologyKhlong LuangThailand

Personalised recommendations