Advertisement

Sugar Tech

pp 1–12 | Cite as

Production of Nylon-6/Cellulose Nanocrystal Composite Films Using Solvent Dissolution

  • Thamonwan Sucharitpong
  • Nga Tien Lam
  • Prakit SukyaiEmail author
Research Article
  • 47 Downloads

Abstract

Nylon-6 (N6) composites were incorporated with cellulose nanocrystals (CNCs) extracted from sugarcane bagasse via solvent dissolution. The effect of the CNC content was estimated at 0, 1, 3, 5 and 7 wt%. Atomic force microscopy images showed that the diameter and length of the obtained CNCs were 52.4 ± 14.8 and 400.38 ± 104.8 nm, respectively. Fourier transform infrared analysis illustrated the increasing dominant peak intensity of cellulose in the composites with a higher CNC content. X-ray diffraction and mechanical analysis determined the optimum improvement in crystallinity index and Young’s modulus in loading 1 wt% of CNCs, with values of 64.37 ± 0.12% and 675.27 MPa, respectively. The highest opacity value of the N6/CNC composites was 8.592 ± 0.062 for N6/CNC-7%. Moreover, CNCs decreased the thermal property of the N6 composites. These results suggested that CNCs have great potential to reinforce N6 polymers.

Keywords

Nylon-6 Sugarcane bagasse Cellulose nanocrystals Solvent dissolution 

Notes

Acknowledgements

The authors gratefully acknowledge UBE Chemical (Asia) Public. Co. Ltd. (Rayong, Thailand) for providing the nylon-6 and the Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok, Thailand for supplying facilities.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Abdel-Halim, E.S. 2014. Chemical modification of cellulose extracted from sugarcane bagasse: Preparation of hydroxyethyl cellulose. Arabian Journal of Chemistry 7 (3): 362–371.  https://doi.org/10.1016/j.arabjc.2013.05.006.CrossRefGoogle Scholar
  2. Abdul Khalil, H.P., Y. Davoudpour, M.N. Islam, A. Mustapha, K. Sudesh, R. Dungani, and M. Jawaid. 2014. Production and modification of nanofibrillated cellulose using various mechanical processes: A review. Carbohydrate Polymers 99: 649–665.  https://doi.org/10.1016/j.carbpol.2013.08.069.CrossRefPubMedGoogle Scholar
  3. Alemdar, Ayse, and Mohini Sain. 2008. Isolation and characterization of nanofibers from agricultural residues—Wheat straw and soy hulls. Bioresource Technology 99 (6): 1664–1671.  https://doi.org/10.1016/j.biortech.2007.04.029.CrossRefPubMedGoogle Scholar
  4. Aulova, Alexandra, and Igor Emri. 2016. Absorptive properties of PA6 as drug delivery container. Materials Today: Proceedings 3 (4): 916–920.  https://doi.org/10.1016/j.matpr.2016.03.020.CrossRefGoogle Scholar
  5. Aydemir, Deniz, Alper Kiziltas, Esra Erbas Kiziltas, Douglas J. Gardner, and Gokhan Gunduz. 2015. Heat treated wood–nylon 6 composites. Composites Part B Engineering 68: 414–423.  https://doi.org/10.1016/j.compositesb.2014.08.040.CrossRefGoogle Scholar
  6. Samir, Azizi, My Ahmed Said, Fannie Alloin, and Alain Dufresne. 2005. Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6 (2): 612–626.  https://doi.org/10.1021/bm0493685.CrossRefGoogle Scholar
  7. Chen, Wenshuai, Yu. Haipeng, Yixing Liu, Peng Chen, Mingxin Zhang, and Yunfei Hai. 2011. Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydrate Polymers 83 (4): 1804–1811.  https://doi.org/10.1016/j.carbpol.2010.10.040.CrossRefGoogle Scholar
  8. Cherian, Bibin Mathew, Alcides Lopes Leão, Sivoney Ferreira de Souza, Ligia Maria Manzine Costa, Gabriel Molina de Olyveira, M. Kottaisamy, E.R. Nagarajan, and S. Thomas. 2011. Cellulose nanocomposites with nanofibres isolated from pineapple leaf fibers for medical applications. Carbohydrate Polymers 86 (4): 1790–1798.  https://doi.org/10.1016/j.carbpol.2011.07.009.CrossRefGoogle Scholar
  9. Cho, J.W., and D.R. Paul. 2001. Nylon 6 nanocomposites by melt compounding. Polymer 42 (3): 1083–1094.  https://doi.org/10.1016/S0032-3861(00)00380-3.CrossRefGoogle Scholar
  10. Corrêa, Ana Carolina, Eliangela de Morais, Vitor Brait Teixeira, K.B. Carmona, Kelcilene Bruna Ricardo Teodoro, Cauê Ribeiro, Luiz Henrique Capparelli Mattoso, and José Manoel Marconcini. 2013. Obtaining nanocomposites of polyamide 6 and cellulose whiskers via extrusion and injection molding. Cellulose 21 (1): 311–322.  https://doi.org/10.1007/s10570-013-0132-z.CrossRefGoogle Scholar
  11. de Morais Teixeira, Eliangela, Ana Carolina Corrêa, Alexandra Manzoli, Fabio de Lima Leite, Cauê Ribeiro de Oliveira, and Luiz Henrique Mattoso. 2010. Cellulose nanofibers from white and naturally colored cotton fibers. Cellulose 17 (3): 595–606.  https://doi.org/10.1007/s10570-010-9403-0.CrossRefGoogle Scholar
  12. Dufresne, Alain, Michele B. Kellerhals, and Bernard Witholt. 1999. Transcrystallization in Mcl-PHAs/cellulose whiskers composites. Macromolecules 32 (22): 7396–7401.  https://doi.org/10.1021/ma990564r.CrossRefGoogle Scholar
  13. Eichhorn, Stephen J. 2011. Cellulose nanowhiskers: Promising materials for advanced applications. Soft Matter 7 (2): 303–315.  https://doi.org/10.1039/C0SM00142B.CrossRefGoogle Scholar
  14. Fortunati, E., F. Luzi, D. Puglia, A. Terenzi, M. Vercellino, L. Visai, C. Santulli, L. Torre, and J.M. Kenny. 2013. Ternary PVA nanocomposites containing cellulose nanocrystals from different sources and silver particles: Part II. Carbohydrate Polymers 97 (2): 837–848.  https://doi.org/10.1016/j.carbpol.2013.05.015.CrossRefPubMedGoogle Scholar
  15. Holbery, James, and Dan Houston. 2006. Natural-fiber-reinforced polymer composites in automotive applications. JOM Journal of the Minerals Metals and Materials Society 58 (11): 80–86.  https://doi.org/10.1007/s11837-006-0234-2.CrossRefGoogle Scholar
  16. Jang, Seung Phil, and Dukjoon Kim. 2000. Thermal, mechanical, and diffusional properties of nylon 6/ABS polymer blends: Compatibilizer effect. Polymer Engineering & Science 40 (7): 1635–1642.  https://doi.org/10.1002/pen.11295.CrossRefGoogle Scholar
  17. Jia, Y.C., H. He, P. Yu, J. Chen, and X.L. Lai. 2016. Synergistically improved thermal conductivity of polyamide-6 with low melting temperature metal and graphite. Express Polymer Letters 10 (8): 679–692.  https://doi.org/10.3144/expresspolymlett.2016.61.CrossRefGoogle Scholar
  18. Jiang, Shaohua, Haoqing Hou, Andreas Greiner, and Seema Agarwal. 2012. Tough and transparent nylon-6 electrospun nanofiber reinforced melamine-formaldehyde composites. ACS Applied Materials & Interfaces 4 (5): 2597–2603.  https://doi.org/10.1021/am300286m.CrossRefGoogle Scholar
  19. Joshi, M.K., A.P. Tiwari, B. Maharjan, K.S. Won, H.J. Kim, C.H. Park, and C.S. Kim. 2016. Cellulose reinforced nylon-6 nanofibrous membrane: Fabrication strategies, physicochemical characterizations, wicking properties and biomimetic mineralization. Carbohydrate Polymers 147: 104–113.  https://doi.org/10.1016/j.carbpol.2016.02.056.CrossRefPubMedGoogle Scholar
  20. Khanna, Y.P., and W.P. Kuhn. 1997. Measurement of crystalline index in nylons by DSC: Complexities and recommendations. Journal of Polymer Science Part B: Polymer Physics 35 (14): 2219–2231.  https://doi.org/10.1002/(SICI)1099-0488(199710)35:14%3c2219:AID-POLB3%3e3.0.CO;2-R.CrossRefGoogle Scholar
  21. Khoo, R.Z., H. Ismail, and W.S. Chow. 2016. Thermal and morphological properties of poly (lactic acid)/nanocellulose nanocomposites. Procedia Chemistry 19: 788–794.  https://doi.org/10.1016/j.proche.2016.03.086.CrossRefGoogle Scholar
  22. Kiziltas, Alper, Douglas J. Gardner, Yousoo Han, and Han-Seung Yang. 2011. Dynamic mechanical behavior and thermal properties of microcrystalline cellulose (MCC)-filled nylon 6 composites. Thermochimica Acta 519 (1–2): 38–43.  https://doi.org/10.1016/j.tca.2011.02.026.CrossRefGoogle Scholar
  23. Kiziltas, Alper, Behzad Nazari, Douglas J. Gardner, and Douglas W. Bousfield. 2014. Polyamide 6–cellulose composites: effect of cellulose composition on melt rheology and crystallization behavior. Polymer Engineering & Science 54 (4): 739–746.  https://doi.org/10.1002/pen.23603.CrossRefGoogle Scholar
  24. Klemm, D., B. Heublein, H.P. Fink, and A. Bohn. 2005. Cellulose: Fascinating biopolymer and sustainable raw material. Angewandte Chemie, International Edition 44 (22): 3358–3393.  https://doi.org/10.1002/anie.200460587. (in English).CrossRefGoogle Scholar
  25. Kumar, Anuj, Yuvraj Singh Negi, Veena Choudhary, and Nishi Kant Bhardwaj. 2014a. Characterization of cellulose nanocrystals produced by acid-hydrolysis from sugarcane bagasse as agro-waste. Journal of Materials Physics and Chemistry 2 (1): 1–8.  https://doi.org/10.12691/jmpc-2-1-1.CrossRefGoogle Scholar
  26. Kumar, Anuj, Yuvraj Singh Negi, Veena Choudhary, and Nishi Kant Bhardwaj. 2014b. Microstructural and mechanical properties of porous biocomposite scaffolds based on polyvinyl alcohol, nano-hydroxyapatite and cellulose nanocrystals. Cellulose 21 (5): 3409–3426.  https://doi.org/10.1007/s10570-014-0339-7.CrossRefGoogle Scholar
  27. Kuo, Ping-Chung, Diptiranjan Sahu, and Hsin Her Yu. 2006. Properties and biodegradability of chitosan/nylon 11 blending films. Polymer Degradation and Stability 91 (12): 3097–3102.  https://doi.org/10.1016/j.polymdegradstab.2006.07.025.CrossRefGoogle Scholar
  28. Lam, Nga Tien, Rungsima Chollakup, Wirasak Smitthipong, Thidarat Nimchua, and Prakit Sukyai. 2017a. Characterization of cellulose nanocrystals extracted from sugarcane bagasse for potential biomedical materials. Sugar Tech 19 (5): 539–552.  https://doi.org/10.1007/s12355-016-0507-1.CrossRefGoogle Scholar
  29. Lam, Nga Tien, Wipanee Saewong, and Prakit Sukyai. 2017b. Effect of varying hydrolysis time on extraction of spherical bacterial cellulose nanocrystals as a reinforcing agent for poly(vinyl alcohol) composites. Journal of Polymer Research 24 (5): p71.  https://doi.org/10.1007/s10965-017-1232-5.CrossRefGoogle Scholar
  30. Letz, R., F.C. Mahoney, D.L. Hershman, S. Woskie, and T.J. Smith. 1990. Neurobehavioral effects of acute styrene exposure in fiberglass boatbuilders. Neurotoxicology and Teratology 12 (6): 665–668.  https://doi.org/10.1016/0892-0362(90)90083-O.CrossRefPubMedGoogle Scholar
  31. Mandal, Arup, and Debabrata Chakrabarty. 2011. Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization. Carbohydrate Polymers 86 (3): 1291–1299.  https://doi.org/10.1016/j.carbpol.2011.06.030.CrossRefGoogle Scholar
  32. Moon, R.J., A. Martini, J. Nairn, J. Simonsen, and J. Youngblood. 2011. Cellulose nanomaterials review: Structure, properties and nanocomposites. Chemical Society Reviews 40 (7): 3941–3994.  https://doi.org/10.1039/c0cs00108b.CrossRefPubMedGoogle Scholar
  33. Nam, Ki-Taek, Hem Raj Pant, Jin-won Jeong, Bishweshwar Pant, Byeong-il Kim, and Hak-Yong Kim. 2011. Solvent degradation of nylon-6 and its effect on fiber morphology of electrospun mats. Polymer Degradation and Stability 96 (11): 1984–1988.  https://doi.org/10.1016/j.polymdegradstab.2011.08.012.CrossRefGoogle Scholar
  34. Nielsen, Lawrence E. 1974. Morphology and the elastic modulus of block polymers and polyblends. Rheologica Acta 13 (1): 86–92.CrossRefGoogle Scholar
  35. Nirmala, R., R. Navamathavan, H.S. Kang, M.H. El-Newehy, and H.Y. Kim. 2011a. Preparation of polyamide-6/chitosan composite nanofibers by a single solvent system via electrospinning for biomedical applications. Colloids and Surfaces B: Biointerfaces 83 (1): 173–178.  https://doi.org/10.1016/j.colsurfb.2010.11.026.CrossRefPubMedGoogle Scholar
  36. Nirmala, R., Park R. Hye-Min, R. Navamathavan, Hyung-Sub Kang, Mohamed H. El-Newehy, and Hak Yong Kim. 2011b. Lecithin blended polyamide-6 high aspect ratio nanofiber scaffolds via electrospinning for human osteoblast cell culture. Materials Science and Engineering C 31 (2): 486–493.  https://doi.org/10.1016/j.msec.2010.11.013.CrossRefGoogle Scholar
  37. Ozen, Ertan, Alper Kiziltas, Esra Erbas Kiziltas, and Douglas J. Gardner. 2013. Natural fiber blend—nylon 6 composites. Polymer Composites 34 (4): 544–553.  https://doi.org/10.1002/pc.22463.CrossRefGoogle Scholar
  38. Paci, Massimo, Sara Filippi, and Pierluigi Magagnini. 2010. Nanostructure development in nylon 6-Cloisite® 30B composites. Effects of the preparation conditions. European Polymer Journal 46 (5): 838–853.  https://doi.org/10.1016/j.eurpolymj.2010.02.012.CrossRefGoogle Scholar
  39. Panchal, Prachiben, Emmanuel Ogunsona, and Tizazu Mekonnen. 2018. Trends in advanced functional material applications of nanocellulose. Processes 7 (1): 10.  https://doi.org/10.3390/pr7010010.CrossRefGoogle Scholar
  40. Pandey, Ashok, Carlos R. Soccol, Poonam Nigam, and Vanete T. Soccol. 2000. Biotechnological potential of agro-industrial residues. I: Sugarcane bagasse. Bioresource Technology 74 (1): 69–80.  https://doi.org/10.1016/S0960-8524(99)00142-X.CrossRefGoogle Scholar
  41. Pandey, Jitendra K., Hyun Taek Lee, Hitoshi Takagi, S.H. Ahn, D.R. Saini, and M. Misra. 2015. Dispersion of nanocellulose (NC) in polypropylene (PP) and polyethylene (PE) matrix. In Handbook of polymer nanocomposites. Processing, performance and application: volume C: Polymer nanocomposites of cellulose nanoparticles, ed. J.K. Pandey, H. Takagi, A.N. Nakagaito, and H.-J. Kim, 179–189. Berlin: Springer.Google Scholar
  42. Pant, Hem Raj, Madhab Prasad Bajgai, Chuan Yi, R. Nirmala, Ki Taek Nam, Woo-il Baek, and Hak Yong Kim. 2010. Effect of successive electrospinning and the strength of hydrogen bond on the morphology of electrospun nylon-6 nanofibers. Colloids and Surfaces A: Physicochemical and Engineering Aspects 370 (1–3): 87–94.  https://doi.org/10.1016/j.colsurfa.2010.08.051.CrossRefGoogle Scholar
  43. Patel, Vivek, and Yashwant Mahajan. 2014. Polymer nanocomposites: Emerging growth driver for the global automotive industry. In Handbook of polymernanocomposites. Processing, performance and application, ed. J.K. Pandey, 511–538. Berlin: Springer.CrossRefGoogle Scholar
  44. Peng, Yucheng, Douglas J. Gardner, and Yousoo Han. 2015. Characterization of mechanical and morphological properties of cellulose reinforced polyamide 6 composites. Cellulose 22 (5): 3199–3215.  https://doi.org/10.1007/s10570-015-0723-y.CrossRefGoogle Scholar
  45. Pukánszky, B. 1990. Influence of interface interaction on the ultimate tensile properties of polymer composites. Composites 21 (3): 255–262.  https://doi.org/10.1016/0010-4361(90)90240-W.CrossRefGoogle Scholar
  46. Qua, E.H., and P.R. Hornsby. 2013. Preparation and characterisation of nanocellulose reinforced polyamide-6. Plastics, Rubber and Composites 40 (6–7): 300–306.  https://doi.org/10.1179/1743289810y.0000000019.CrossRefGoogle Scholar
  47. Reddy, Narendra, and Yiqi Yang. 2005. Biofibers from agricultural byproducts for industrial applications. Trends in Biotechnology 23 (1): 22–27.  https://doi.org/10.1016/j.tibtech.2004.11.002.CrossRefPubMedGoogle Scholar
  48. Reuvers, N.J.W., H.P. Huinink, H.R. Fischer, and O.C.G. Adan. 2012. Quantitative water uptake study in thin nylon-6 films with NMR imaging. Macromolecules 45 (4): 1937–1945.  https://doi.org/10.1021/ma202719x.CrossRefGoogle Scholar
  49. Saelee, Kullasatri, Naiyasit Yingkamhaeng, Thidarat Nimchua, and Prakit Sukyai. 2016. An environmentally friendly xylanase-assisted pretreatment for cellulose nanofibrils isolation from sugarcane bagasse by high-pressure homogenization. Industrial Crops and Products 82: 149–160.  https://doi.org/10.1016/j.indcrop.2015.11.064.CrossRefGoogle Scholar
  50. Shelley, J.S., P.T. Mather, and K.L. DeVries. 2001. Reinforcement and environmental degradation of nylon-6/clay nanocomposites. Polymer 42 (13): 5849–5858.  https://doi.org/10.1016/S0032-3861(00)00900-9.CrossRefGoogle Scholar
  51. Šturcová, Adriana, Geoffrey R. Davies, and Stephen J. Eichhorn. 2005. Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromolecules 6 (2): 1055–1061.  https://doi.org/10.1021/bm049291k.CrossRefPubMedGoogle Scholar
  52. Sun, J.X., X.F. Sun, H. Zhao, and R.C. Sun. 2004. Isolation and characterization of cellulose from sugarcane bagasse. Polymer Degradation and Stability 84 (2): 331–339.  https://doi.org/10.1016/j.polymdegradstab.2004.02.008.CrossRefGoogle Scholar
  53. Sun, X.F., F. Xu, R.C. Sun, P. Fowler, and M.S. Baird. 2005. Characteristics of degraded cellulose obtained from steam-exploded wheat straw. Carbohydrate Research 340 (1): 97–106.  https://doi.org/10.1016/j.carres.2004.10.022.CrossRefPubMedGoogle Scholar
  54. Tunç, Sibel, and Osman Duman. 2011. Preparation of active antimicrobial methyl cellulose/carvacrol/montmorillonite nanocomposite films and investigation of carvacrol release. LWT-Food Science and Technology 44 (2): 465–472.  https://doi.org/10.1016/j.lwt.2010.08.018.CrossRefGoogle Scholar
  55. Unal, H., F. Fındık, and A. Mimaroglu. 2003. Mechanical behavior of nylon composites containing talc and kaolin. Journal of Applied Polymer Science 88 (7): 1694–1697.  https://doi.org/10.1002/app.11927.CrossRefGoogle Scholar
  56. Van den Berg, Otto, Jeffrey R. Capadona, and Christoph Weder. 2007. Preparation of homogeneous dispersions of tunicate cellulose whiskers in organic solvents. Biomacromolecules 8 (4): 1353–1357.  https://doi.org/10.1021/bm061104q.CrossRefPubMedGoogle Scholar
  57. Vanitjinda, G., T. Nimchua, and P. Sukyai. 2019. Effect of xylanase-assisted pretreatment on the properties of cellulose and regenerated cellulose films from sugarcane bagasse. International Journal of Biological Macromolecules 122: 503–516.  https://doi.org/10.1016/j.ijbiomac.2018.10.191.CrossRefPubMedGoogle Scholar
  58. Verma, D., P.C. Gope, M.K. Maheshwari, and R.K. Sharma. 2012. Bagasse fiber composites: A review. Journal of Materials and Environmental Science 3 (6): 1079–1092.Google Scholar
  59. Wakamura, Yasujiro. 2003. Utilization of bagasse energy in thailand. Mitigation and Adaptation Strategies for Global Change 8: 253–260.CrossRefGoogle Scholar
  60. Wang, Q., J.Y. Zhu, and J.M. Considine. 2013. Strong and optically transparent films prepared using cellulosic solid residue recovered from cellulose nanocrystals production waste stream. ACS Applied Materials & Interfaces 5 (7): 2527–2534.  https://doi.org/10.1021/am302967m.CrossRefGoogle Scholar
  61. Warheit, D.B., B.R. Laurence, K.L. Reed, D.H. Roach, G.A.M. Reynolds, and T.R. Webb. 2004. Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicological Sciences 77 (1): 117–125.  https://doi.org/10.1093/toxsci/kfg228.CrossRefPubMedGoogle Scholar
  62. Xiang, Meng, Chengjie Li, and Lin Ye. 2017. In situ synthesis of monomer casting nylon-6/reduced graphene oxide nanocomposites: Intercalation structure and electrically conductive properties. Journal of Industrial and Engineering Chemistry 50: 123–132.  https://doi.org/10.1016/j.jiec.2017.02.005.CrossRefGoogle Scholar
  63. Xin, Fei, and Lin Li. 2012. The role of a silane coupling agent in carbon nanotube/polypropylene composites. Journal of Composite Materials 46 (26): 3267–3275.  https://doi.org/10.1177/0021998312437235.CrossRefGoogle Scholar
  64. Yousefian, Hajar, and Denis Rodrigue. 2016. Effect of nanocrystalline cellulose on morphological, thermal, and mechanical properties of nylon 6 composites. Polymer Composites 37 (5): 1473–1479.  https://doi.org/10.1002/pc.23316.CrossRefGoogle Scholar
  65. Zhang, Haitao, Shubai Li, Christopher J. Branford White, Xin Ning, Huali Nie, and Limin Zhu. 2009. Studies on electrospun nylon-6/chitosan complex nanofiber interactions. Electrochimica Acta 54 (24): 5739–5745.  https://doi.org/10.1016/j.electacta.2009.05.021.CrossRefGoogle Scholar
  66. Zhou, Y.M., S.Y. Fu, L.M. Zheng, and H.Y. Zhan. 2012. Effect of nanocellulose isolation techniques on the formation of reinforced poly(vinyl alcohol) nanocomposite films. Express Polymer Letters 6 (10): 794–804.  https://doi.org/10.3144/expresspolymlett.2012.85.CrossRefGoogle Scholar
  67. Zhu, Rui, Vikram Yadama, Hang Liu, Richard J.T. Lin, and David P. Harper. 2017. Fabrication and characterization of Nylon 6/cellulose nanofibrils melt-spun nanocomposite filaments. Composites Part A Applied Science and Manufacturing 97: 111–119.  https://doi.org/10.1016/j.compositesa.2017.02.025.CrossRefGoogle Scholar
  68. Zhu, Zhisheng, Mingjun Zhu, and Zhenqiang Zhenqiang. 2012. Pretreatment of sugarcane bagasse with NH4OH–H2O2 and ionic liquid for efficient hydrolysis and bioethanol production. Bioresource Technology 119: 199–207.  https://doi.org/10.1016/j.biortech.2012.05.111.CrossRefPubMedGoogle Scholar
  69. Zuluaga, Robin, Jean Luc Putaux, Javier Cruz, Juan Vélez, Iñaki Mondragon, and Piedad Gañán. 2009. Cellulose microfibrils from banana rachis: Effect of alkaline treatments on structural and morphological features. Carbohydrate Polymers 76 (1): 51–59.  https://doi.org/10.1016/j.carbpol.2008.09.024.CrossRefGoogle Scholar

Copyright information

© Society for Sugar Research & Promotion 2019

Authors and Affiliations

  1. 1.Biotechnology of Biopolymers and Bioactive Compounds Special Research Unit, Department of Biotechnology, Faculty of Agro-IndustryKasetsart UniversityBangkokThailand
  2. 2.Center for Advanced Studies for Agriculture and Food, Kasetsart University Institute for Advanced StudiesKasetsart UniversityBangkokThailand

Personalised recommendations