Sugar Tech

pp 1–13 | Cite as

Phenotypic and Molecular Characterization of a Core Collection of Saccharum spontaneum L. in China

  • Chao-hua Xu
  • Xin-long Liu
  • David M. Burner
  • Zaheer Abbas
  • Yong-Bao Pan
  • Ibrahim Soliman Elgamal
  • Xin LuEmail author
  • Huo-sheng SuEmail author
Research Article


Saccharum spontaneum L. is widely used in developing new sugarcane (Saccharum spp. hybrids) cultivars due to its ability to transmit high vigor, ratooning ability, and increased tolerance to various biotic and abiotic stresses. Interspecific hybridization helps to broaden the genetic diversity of modern sugarcane cultivars, but there is a continual need to collect and characterize new sources of germplasm. The objective of this study was to evaluate a primary core collection of 92 S. spontaneum genotypes (82 were of Chinese origin) using 29 phenotypic traits and 15 simple sequence repeat markers. There was considerable morphological variation among the S. spontaneum genotypes. Principal component and heatmap analyses indicated that the genotypes could be separated into four groups using two major traits related to yield (stalk length, stalk diameter, and stalk weight) and juice quality traits (juice Brix, juice fiber, juice sucrose, and apparent purity). Genotypes collected from the same geographic location did not cluster together, so geography alone was not a good predictor of genotypic divergence in this collection. Phenotypic trait data alone failed to fully differentiate genotypes, but a combination of phenotypic and molecular data was useful in characterizing the genotypes. The phenotypic and molecular characterization of unexploited S. spontaneum germplasm will facilitate in the identification of potential parents for introgression and identification of high-yielding, disease-resistant cultivars, energy canes, and cultivars suited for abiotic stresses, thereby increasing the economic sustainability of sugarcane.


Genetic diversity Phenotypic diversity SSR Sugarcane 



This work was supported by Yunnan Natural Science Foundation (2016FB067, 2006C0013Z), funding from the Yunnan Provincial Science and Technology Department for High-End Talent Program and the NFCA with USDA-ARS: A Study on Sugarcane Genetic Improvement and Application, Earmarked Fund for the protection of agricultural germplasm resource (2017NWB017), National Infrastructure for Crop Germplasm Resources (NICGR2018-44) and Egypt, Pakistan project of “Outstanding Young Scientist from Development Countries to Work in China”.

Author Contributions

HS and XL conceived and designed the experiments. HS, XL, and XL conducted the experiments. CX, XL, YP, and DMB analyzed the data. CX and XL contributed reagents/materials/analysis tools. CX, HS, XL, and YP wrote the manuscript, and DMB, YP, ZA, and ISE revised and edited the English translation. HS and XL approved the final version of the paper.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Aitken, K.S., P.A. Jackson, and C.L.A. McIntyre. 2005. Combination of AFLP and SSR markers provides extensive map coverage and identification of homo (eo) logous linkage groups in a sugarcane cultivar. Theoretical and Applied Genetics 5: 789–801.CrossRefGoogle Scholar
  2. Aitken, K., J.C. Li, G. Piperidis, Q. Cai, Y.H. Fan, and P. Jackson. 2018. Worldwide genetic diversity of the wild species Saccharum spontaneum and level of diversity captured within sugarcane breeding programs. Crop Science 58: 218–229.CrossRefGoogle Scholar
  3. Alwala, S., A. Suman, J.A. Arro, J.C. Veremis, and C.A. Kimbeng. 2006. Target region amplification polymorphism (TRAP) for assessing genetic diversity in sugarcane germplasm collections. Crop Science 1: 448–455.CrossRefGoogle Scholar
  4. Berding, N., and B.T. Roach. 1987. Germplasm collection, maintenance, and use. In Sugarcane improvement through breeding, ed. D.J. Heinz, 143–210. Amsterdam: Elsevier.CrossRefGoogle Scholar
  5. Brown, J.S., R.J. Schnell, E.J. Power, S.L. Douglas, and D.N. Kuhn. 2006. Analysis of clonal germplasm from five Saccharum species: S. barberi, S. robustum, S. officinarum, S. sinense, and S. spontaneum. A study of inter- and intra-species relationships using microsatellite markers. Genetic Resources and Crop Evolution 54: 627–648.CrossRefGoogle Scholar
  6. Burner, D.M., and B.L. Legendre. 1993. Sugarcane genome amplification for the subtropics: A twenty year effort. Sugar Cane 29: 403–411.Google Scholar
  7. Cai, Q., K.S. Aitken, Y.H. Fan, G. Piperidis, P. Jackson, and C.L. McIntyre. 2005a. A preliminary assessment of the genetic relationship between Erianthus rockii and the “Saccharum complex” using microsatellite (SSR) and AFLP markers. Plant Science 169: 976–984.CrossRefGoogle Scholar
  8. Cai, Q., and Y.H. Fan. 2006. Descriptors and data standard for sugarcane (Saccharum officinarum L). Beijing: China Agriculture Press.Google Scholar
  9. Cai, Q., and Y.H. Fan. 2008. Technical code for evaluating germ plasm resources-sugarcane (Saccharum L.). Beijing: China Agriculture Press.Google Scholar
  10. Cai, Q., Y.H. Fan, K. Aitken, G. Piperidis, C.L. Mcintyre, and P. Jackson. 2005b. Assessment of the phylogenetic relationships within the “Saccharum complex” using AFLP markers. Acta Agronomica Sinica 5: 551–559.Google Scholar
  11. Chang, D., F.Y. Yang, J.J. Yan, Y.Q. Wu, S.Q. Bai, X.Z. Liang, and Y.M. Gan. 2012. SRAP analysis of genetic diversity of nine native populations of wild sugarcane, Saccharum spontaneum, from Sichuan, China. Genetics Molecular Research 12: 1245–1253.CrossRefGoogle Scholar
  12. Chen, R.K. 2011. Theory and practice in modern sugarcane breeding. Beijing: China Agriculture Press.Google Scholar
  13. Chen, H., Y.H. Fan, X.W. Shi, Q. Cai, M. Zhang, and Y.P. Zhang. 2000. Research on genetic diversity and systemic evolution in Saccharum spontaneum L. Acta Agronomica Sinica 5: 645–652.Google Scholar
  14. Chen, P.H., Y.B. Pan, R.K. Chen, L.P. Xu, and Y.Q. Chen. 2009. SSR marker-based analysis of genetic relatedness among sugarcane cultivars (Saccharum spp. hybrids) from breeding programs in China and other countries. Sugar Tech 11: 347–354.CrossRefGoogle Scholar
  15. Cordeiro, G.M., G.O. Taylor, and R.J. Henry. 2000. Characterisation of microsatellite markers from sugar cane (Saccharum sp.), a highly polyploid species. Plant Science 155: 161–168.CrossRefPubMedGoogle Scholar
  16. Cuadrado, A., R. Acevedo, S.M.D. Dela- Espina, N.L. Jouve, and C. Dela-Torre. 2004. Genome remodelling in three modern S. officinarum × S. spontaneum sugarcane cultivars. Journal of Experiment Botany 398: 847–854.CrossRefGoogle Scholar
  17. D’Hont, A. 2005. Unravelling the genome structure of polyploids using FISH and GISH; examples of sugarcane and banana. Cytogenetic and Genome Research 109: 27–33.CrossRefPubMedGoogle Scholar
  18. D’Hont, A., L. Grivet, P. Feldmann, P. Rao, N. Berding, and J.C. Glaszmann. 1996. Characterisation of the double genome structure of modern sugarcane cultivars (Saccharum spp.) by molecular cytogenetics. Molecular and General Genetics 250: 405–413.CrossRefPubMedGoogle Scholar
  19. Da Silva, J.A.G. 2001. Preliminary analysis of microsatellite markers derived from sugarcane expressed sequence tags (ESTs). Genetics and Molecular Biology 24: 155–159.CrossRefGoogle Scholar
  20. Da Silva, J.A., M.E. Sorrells, W. Burnquist, and S.D. Tanksley. 1993. RFLP linkage map and genome analysis of Saccharum spontaneum. Genome 36: 782–791.CrossRefPubMedGoogle Scholar
  21. Deng, H.H., and Q. Zhang. 2006. Analysis on the parents of commercial varieties released in mainland China in recent years. Guangdong Agriculture Science 12: 7–10.Google Scholar
  22. Deren, C.W. 1995. Genetic base of U.S. mainland sugarcane. Crop Science 35: 1195–1199.CrossRefGoogle Scholar
  23. Doyle, J.J., and J.L. Doyle. 1990. Isolation of plant DNA from fresh tissue. Focus 12: 13–15.Google Scholar
  24. Dunckelman, P.H., and B.L. Legendre. 1982. Guide to sugarcane breeding in the temperate zone. USDA-ARS, ARM-S-22, New Orleans.Google Scholar
  25. Fan, L.N., H.H. Deng, Q.W. Luo, H.Y. He, Y. Li, Q.N. Wang, and Y.W. Qi. 2012. Genetic diversity of Saccharum spontaneum from geographical regions of China assessed by simple sequence repeats. Genetics and Molecular Research 4: 5916–5925.Google Scholar
  26. Ghafoor, A., Z. Ahmad, A. Qureshi, and M. Bashir. 2002. Genetic relationship in Vigna mungo (L.) Hepper and V. radiata (L.) R. Wilczek based on morphological traits and SDS-PAGE. Euphytica 123 (3): 367–378.CrossRefGoogle Scholar
  27. Govindaraj, P., V.A. Amalraj, K. Mohanraj, and N.V. Nair. 2014. Collection, characterization and phenotypic diversity of Saccharum spontaneum L. from arid and semi arid zones of Northwestern India. Sugar Tech 1: 36–43.CrossRefGoogle Scholar
  28. Hale, A.L., E.O. Dufrene, T.L. Tew, Y.B. Pan, R.P. Viator, P.M. White, J.C. Veremis, W.H. White, R.C. Cobill, E.P. Richard, H. Rukavina, and M.P. Grisham. 2012. Registration of ‘Ho02-113’ sugarcane. Journal of Plant Registration 7: 51–57.CrossRefGoogle Scholar
  29. Henry, R.J., and C. Kole. 2010. Genetics, genomics and breeding of sugarcane. Boca Raton, FL: CRC Press.CrossRefGoogle Scholar
  30. Kalia, R.K., M.K. Rai, S. Kalia, R. Singh, and K. Dhawan. 2011. Microsatellite markers: An overview of the recent progress in plants. Euphytica 177: 309–334.CrossRefGoogle Scholar
  31. Liu, X.L., Q. Cai, Y. Bi, X. Lu, L. Ma, X.M. Ying, and J. Mao. 2009. A rapid silver staining method for PAGE used in sugarcane AFLP and SSR molecular markers. Jiangsu Journal of Agricultural Science 25: 433–435.Google Scholar
  32. Liu, X.L., X.J. Li, C.H. Xu, X.Q. Lin, and Z.H. Deng. 2016. Genetic diversity of populations of Saccharum spontaneum, with different ploidy levels using SSR molecular markers. Sugar Tech 4: 365–372.CrossRefGoogle Scholar
  33. Liu, X.L., J. Mao, X. Lu, L. Ma, S.A. Karen, P.A. Jackson, Q. Cai, and Y.H. Fan. 2010a. Construction of molecular genetic linkage map of sugarcane based on SSR and AFLP markers. Acta Agronomic Sinica 1: 177–183.CrossRefGoogle Scholar
  34. Liu, X.L., H.S. Su, X.M. Ying, L. Ma, X. Lu, H.B. Liu, and Z.H. Deng. 2012. Phenotypic correlation and genetic diversity of decaploids of Saccharum spontaneum. Journal of Hunan Agricultural University 6: 574–579.Google Scholar
  35. Liu, X.L., C.W. Wu, J. Mao, Q. Cai, X.M. Ying, and M.A. Li. 2010b. Construction and evaluation on separate population from sugarcane. Southwest China Journal of Agricultural Science 1: 30–36.Google Scholar
  36. Liu, H.B., X.M. Ying, J. Mao, X. Lu, H.S. Su, L. Ma, X.Q. Lin, and Q. Cai. 2013. Genetic diversity analysis for 11 clones wild germplasm of Saccharum spontaneum L. Journal of Plant Genetic Resources 3: 542–546.Google Scholar
  37. Luo, J., Y.B. Pan, L.P. Xu, M.P. Grisham, H. Zhang, and Y.X. Que. 2015. Rational regional distribution of sugarcane cultivars in China. Scientist Reports 5: 15721.CrossRefGoogle Scholar
  38. Mary, S., N.V. Nair, P.K. Chaturvedi, and A. Selvi. 2006. Analysis of genetic diversity among Saccharum spontaneum L. from four geographical regions of India using molecular markers. Genetic Resources and Crop Evolution 6: 1221–1231.CrossRefGoogle Scholar
  39. Milbourne, D., R. Meyer, J.E. Bradshaw, E. Baird, N. Bonar, J. Provan, W. Powell, and R. Waugh. 1997. Comparison of PCR based marker systems for the analysis of genetic relationships in cultivated potato. Molecular Breeding 2: 127–136.CrossRefGoogle Scholar
  40. Pan, Y.B. 2006. Highly polymorphic microsatellite DNA markers for sugarcane germplasm evaluation and variety identity testing. Sugar Tech 4: 246–256.CrossRefGoogle Scholar
  41. Pan, Y.B. 2018. Application of molecular markers in sugarcane germplasm innovation and breeding: new germplasm with cytoplasm from Saccharum spontaneum. Sugar Tech 2: 1.Google Scholar
  42. Pan, Y.B., D.M. Burner, and B.L. Legendre. 2000. An assessment of the phylogenetic relationship among sugarcane and related taxa based on the nucleotide sequence of 5S rRNA intergenic spacers. Genetics 3: 285–295.Google Scholar
  43. Pan, Y.B., D.M. Burner, B.L. Legendre, M.P. Grisham, and W.H. White. 2005. An assessment of the genetic diversity within a collection of Saccharum spontaneum L. with RAPD-PCR. Genetic Resources and Crop Evolution 8: 895–903.CrossRefGoogle Scholar
  44. Pan, Y.B., D.M. Burner, Q. Wei, G.M. Cordeiro, B.L. Legendre, and R.J. Henry. 2004. New Saccharum hybrids in S. spontaneum cytoplasm developed through a combination of conventional and molecular breeding approaches. Plant Genetic Resources 2: 131–139.CrossRefGoogle Scholar
  45. Pan, Y.B., T.L. Tew, R.J. Schnell, R.P. Viator, E.P. Richard Jr., M.P. Grisham, and W.H. White. 2006. Microsatellite DNA marker-assisted selection of Saccharum spontaneum cytoplasm-derived germplasm. Sugar Tech 1: 23–29.CrossRefGoogle Scholar
  46. Parida, S.K., S.K. Kalia, S. Kaul, V. Dalal, G. Hemaprabha, A. Selvi, A. Pandit, A. Singh, K. Gaikwad, T.R. Sharma, P.S. Srivastava, N.K. Singh, and T. Mohapatra. 2009. Informative genomic microsatellite markers for efficient genotyping applications in sugarcane. Theoretical and Applied Genetics 2: 327–338.CrossRefGoogle Scholar
  47. Piperidis, G., N. Piperidis, and A. D’Hont. 2010. Molecular cytogenetic investigation of chromosome composition and transmission in sugarcane. Molecular Genetics and Genomics 284: 65–73.CrossRefPubMedGoogle Scholar
  48. Qi, Y.W., L.N. Fan, Q.W. Luo, Q.N. Wang, Y.S. Chen, Z.X. Huang, and Q.W. Li. 2013. Establishment of Saccharum spontaneum L. core collections. Acta Agronomic Sinica 4: 649–656.CrossRefGoogle Scholar
  49. Que, Y.X., Y.B. Pan, Y.H. Lu, C. Yang, Y.T. Yang, N. Huang, and L.P. Xu. 2014. Genetic analysis of diversity within a Chinese local sugarcane germplasm based on start codon targeted polymorphism. BioMed Research International 2014: 1–10.CrossRefGoogle Scholar
  50. Rohlf, F.J. 2008. NTSYS-pc: Numerical Taxonomy and Multivariate Analysis System, Version 2.2. Setauket, NY: Exeter Software.Google Scholar
  51. Shen, S.Y., Y.B. Zhang, J. Deng, J.W. Guo, F.Q. Li, J.M. Dao, X. Fan, H.S. Su, P.F. Zhao, and J.Y. Wu. 2015. Methods for juice traits in sugar cane-II: Determination of brix, sugar content, sucrose content, and fiber content. Yunnan provincial standards: DB53/T664.2-2015.Google Scholar
  52. Singh, R.K., S. Srivastava, S.P. Singh, M.L. Sharma, T. Mohopatra, N.K. Singh, and S.B. Singh. 2008. Identification of new microsatellite DNA markers for sugar and related traits in sugarcane. Sugar Tech 10: 327–333.CrossRefGoogle Scholar
  53. Skinner, J.C., D.M. Hogarth, and K.K. Wu. 1987. Selection methods, criteria, and indices. In Sugarcane improvement through breeding, ed. D.J. Heinz, 409–453. New York: Elsevier.CrossRefGoogle Scholar
  54. Smith, J.S.C., and O.S. Smith. 1992. Fingerprinting crop varieties. Advances in Agronomy 47: 85–140.CrossRefGoogle Scholar
  55. Sreenivasan, T.V., B.S. Ahloowalia, and D.J. Heinz. 1987. Cytogenetics. In Sugarcane improvement through breeding, ed. D.J. Heinz, 211–253. New York: Elsevier.CrossRefGoogle Scholar
  56. Steel, R.G.D., and J.H. Torrie. 1980. Principles and procedures of statistics. A biometrical approach, 2nd ed. Tokyo: McGraw Hill Inter Book Co.Google Scholar
  57. Su, H.S., X.L. Liu, X.M. Ying, J. Mao, X. Lu, L. Ma, Y.H. Fan, and Q. Cai. 2011. Sampling strategy of primary core collection for Saccharum spontaneum. Journal of Hunan Agricultural University 3: 253–259.CrossRefGoogle Scholar
  58. Tai, P.Y.P., and J.D. Miller. 2001. A core collection for Saccharum spontaneum L. from the world collection of sugarcane. Crop Science 3: 879–885.CrossRefGoogle Scholar
  59. Tai, P.Y.P., and J.D. Miller. 2002. Germplasm diversity among four sugarcane species for sugar composition. Crop Science 42: 958–964.CrossRefGoogle Scholar
  60. Tai, P.Y.P., J.D. Miller, and B.L. Legendre. 1994. Preservation of Saccharum spontaneum germplasm through storage of true seed. Sugar Cane 6: 3–8.Google Scholar
  61. White, W.H., T.L. Tew, R.M. Cobill, D.M. Burner, M.P. Grisham, E.O. Dufrene, Y.B. Pan, E.P. Richard, and B.L. Legendre. 2011. Registration of ‘Ho 00-961’ sugarcane. Journal of Plant Registration 5: 332–338.CrossRefGoogle Scholar
  62. Xu, C.H., H.S. Su, H.B. Liu, X. Lu, X.J. Li, C.J. Li, X.Q. Lin, M. Jun, Q.Y. Zi, and X.L. Liu. 2017. An assessment of genetic diversity of yield-related traits of Saccharum spontaneum, from Yunnan Province, China. Sugar Tech 5: 458–468.CrossRefGoogle Scholar
  63. Yeh, F.C., R.C. Yang, B.J.T. Boyle, Z.H. Ye, and X.J. Mao. 1999. POPGENE 32 version 1.32. The user-friendly shareware for population genetic analysis. Alberta: Molec. Biol. Biotech. Centre, University of Alberta.Google Scholar
  64. You, Q., L.P. Xu, Y.F Zheng, Y.X. Que. 2013. Genetic diversity analysis of sugarcane parents in Chinese breeding programmes using gSSR markers. The Scientific World Journal ID 613062.Google Scholar
  65. Zhang, G.M., Y.R. Li, W.Z. He, H. He, X.H. Liu, H.Z. Song, and W.K. Fang. 2010. Analysis of the genetic diversity in Saccharum spontaneum L. accessions from Guangxi province of China with RAPD-PCR. Sugar Tech 1: 31–35.CrossRefGoogle Scholar
  66. Zhang, M.Q., Z.H. Wang, and C. Bai. 2006a. Genetic improvement and efficiency in sugar crops breeding. Beijing: China Agric Press.Google Scholar
  67. Zhang, G.M., R.Z. Yang, H.B. Liu, and W.K. Fang. 2006b. Principal component analysis for 7 quantitative traits and cluster analysis based on 7 quantitative traits of Saccharum spontaneum L. Southwest China. Journal of Agricultural Science 6: 1127–1131.Google Scholar
  68. Zhang, J.S., X.T. Zhang, H.B. Tang, Q. Zhang, X.T. Hua, et al. 2018. Allele-defined genome of the autopolyploid sugarcane Saccharum spontaneum L. Natu Genet 50: 1565. Scholar

Copyright information

© Society for Sugar Research & Promotion 2019

Authors and Affiliations

  • Chao-hua Xu
    • 1
  • Xin-long Liu
    • 1
  • David M. Burner
    • 1
  • Zaheer Abbas
    • 1
  • Yong-Bao Pan
    • 2
  • Ibrahim Soliman Elgamal
    • 1
  • Xin Lu
    • 1
    Email author
  • Huo-sheng Su
    • 1
    Email author
  1. 1.Yunnan Sugarcane Research Institute, Yunnan Academy of Agricultural SciencesYunnan Key Laboratory of Sugarcane Genetic ImprovementKaiyuanPeople’s Republic of China
  2. 2.Sugarcane Research UnitUSDA-ARSHoumaUSA

Personalised recommendations