Advertisement

Sugar Tech

pp 1–8 | Cite as

Soluble Sources of Zinc and Boron on Sugarcane Yield in Southeast Brazil

  • Fernanda Forli Marangoni
  • Rafael OttoEmail author
  • Risely Ferraz de Almeida
  • Valter Casarin
  • Godofredo Cesar Vitti
  • Carlos Sérgio Tiritan
Research Article
  • 23 Downloads

Abstract

Zinc (Zn) and boron (B) are the most limiting micronutrients in production areas of sugarcane in Southeast Brazil. The study tested the hypothesis that applications of Zn and B in planting play a key role in sugarcane yield, not only in the first sugarcane crop cycle but also in the following crop cycle. An experiment with a 4 × 3 factorial design was established in an Ultisol in Alta Floresta, São Paulo, Brazil, with three replications. Four Zn rates (0, 2, 4, and 6 kg ha−1 Zn as ZnSO4) and three B rates (0, 1, and 2 kg ha−1 B as H3BO3) were applied in planting furrow, and yield parameters were evaluated at the first and second year. Additionally, leaching of B was evaluated during 64 days of incubation using soil columns under controlled conditions. Results show that there was no interaction between B and Zn applications in sugarcane yield. Application of Zn showed residual effect by improving sugarcane yield in the second year; Zn also improved quality parameters of sugarcane (pol and fiber). In soils with adequate levels of available Zn (> 1.2 mg dm−3), the rate of 3.9 kg ha−1 of Zn promoted the highest yields in the first ratoon. In opposite, B rates reduced sugarcane yield in the first and second ratoon, even under low B rates (1 kg ha−1). Leaching of B totaled 22% of applied B during 64 days of incubation. The finding is that Zn fertilization with zinc sulfate plays a key role in sugarcane yield, while B application in planting furrow using boric acid should be replaced by a more integrated management of B, including different sources of B and methods of application.

Keywords

Micronutrients Soil fertilization B leaching Boric acid Zinc sulfate 

Notes

Acknowledgements

The authors acknowledge the sugarcane mill (Usina Alto Alegre, Unidade Floresta) for providing field and operational support. R. Otto received a research productivity fellowship from the National Council for Scientific and Technological Development (CNPq; Grant #308007/2016-6).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Author Contributions

FFM, GCV, and CST carried out the experiment. RO and VC involved in planning the work. RFA, RO, and FFM contributed to the interpretation of the results. All authors discussed the results, commented on the manuscript, and contributed to the final manuscript.

References

  1. Alloway, B.J. 2008. Zinc in soils and crop nutrition, 2nd ed. Belgium, Paris: Published by IZA and IFA Brussels.Google Scholar
  2. Bologna, I.R., and G.C. Vitti. 2006. Production and quality of ‘Pera’ orange fruit as a function of sources and doses of boron = Produção e qualidade de frutos de laranjeira ‘Pera’ em função de fontes e doses de boro. Revista Brasileira de Fruticultura 28: 328–330. (in Portuguese, with abstract in English).CrossRefGoogle Scholar
  3. Brown, P.H., N. Bellaloui, R.N. Sah, E. Bassil, and H. Hu. 2002. Uptake and transport of boron. In Boron in plant and animal nutrition, ed. H. Goldbach, B. Rerkasem, M.A. Wimmer, P.H. Brown, M. Thellier, and R.W. Bell, 87–103. New York: Kluwer.CrossRefGoogle Scholar
  4. Cakmak, I., and V. Römheld. 1997. Boron deficiency induced impairments of cellular functions in plants. Plant and Soil 193: 71–83.CrossRefGoogle Scholar
  5. Camargo, A.O., A.C. Moniz, J.A. Jorge, and J.M.A.S. Valadares. 2009. Methods of chemical, mineralogical and physical analysis of soils of the Agronomic Institute of Campinas = Métodos de análise química, mineralógica e física de solos do Instituto Agronômico de Campinas. Campinas: Instituto Agronômico de Campinas. (in Portuguese).Google Scholar
  6. Costa Filho, R.T., and R.M. Prado. 2008. Zinc in nutrition and production of stalks from the third sugarcane stalks cultivated in a Red-Yellow Latosol = Zinco na nutrição e na produção de colmos da terceira soqueira de cana-de-açúcar cultivada em um Latossolo Vermelho-Amarelo. STAB Açúcar Álcool e Subprodutos 26: 6–9. (in Portuguese, with abstract in English).Google Scholar
  7. Dechen, A.R., H.P. Haag, and Q.A.C. Carmello. 1991. Função dos micronutrientes nas plantas. In Micronutrients in agriculture = Micronutrientes na agricultura, ed. M.E. Ferreira and M.C.P. Cruz. Piracicaba: Associação Brasileira para Pesquisa da Potassa e do Fosfato, Brazil. (in Portuguese).Google Scholar
  8. Devi, T.C., M. Bharathalakshmi, M.B.G.S. Kumari, and N.V. Naidu. 2012. Effect of sources and levels of phosphorus with zinc on yield and quality of sugarcane. Sugar Tech 14: 195–198.CrossRefGoogle Scholar
  9. Embrapa. Centro Nacional de Pesquisa de Solos. 2013. Brazilian system of soil classification = Sistema brasileiro de classificação de solos, 3rd ed. Rio de Janeiro: Embrapa/CNPS. (in Portuguese).Google Scholar
  10. Espironello, A., Raij, V. van, Penatti, C.P., Cantarella, H., Morelli, J.L.; Orlando-Filho, J., Landell, M.G.A., Rossetto, R. 1997. Sugarcane = Cana-de-açúcar. In Raij, B. van et al. (Orgs.). Recomendações de adubação e calagem para o Estado de São Paulo, 237–239. Campinas: Fundação IAC (Boletim, 100; in Portuguese).Google Scholar
  11. Faostat. 2018. Food and agriculture organization of the United Nations. Statistics Division. http://www.fao.org/faostat/en/#data. Accessed 15 August 2018.
  12. Farias, C.H.A., P.D. Fernandes, H.R. Gheyi, and J. Dantas Neto. 2009. Industrial quality of sugarcane under irrigation and fertilization with zinc, in the Coastal Tableland of Paraiba = Qualidade industrial de cana-de-açúcar sob irrigação e adubação com zinco, em Tabuleiro Costeiro paraibano. Revista Brasileira de Engenharia Agrícola e Ambiental 13: 419–428. (in Portuguese, with abstract in English).CrossRefGoogle Scholar
  13. Fernandes, M.S. 2006. Mineral Plant Nutrition = Nutrição Mineral de Plantas. Viçosa: Sociedade Brasileira de Ciência do Solo. (in Portuguese).Google Scholar
  14. Fernandes, A.B., A.C. Queiroz, J.C. Pereira, R.P. Lana, M.H.P. Barbosa, D.M. Fonseca, E. Detmann, L.S. Cabral, E.S. Pereira, and A. Vittori. 2003. Chemical composition of sugarcane varieties (Saccharum spp L.) with different production cycles (precocious and intermediate) at three cutting ages = Composição químico-bromatológica de variedades de cana-de-açúcar (Saccharum spp L.) com diferentes ciclos de produção (precoce e intermediário) em três idades de corte. Revista Brasileira de Zootecnia 32: 977–985. (in Portuguese, with abstract in English).CrossRefGoogle Scholar
  15. Franco, H.C.J., E. Mariano, A.C. Vitti, C.E. Faroni, R. Otto, and P.C.O. Trivelin. 2011. Sugarcane response to boron and zinc in Southeastern Brazil. Sugar Tech 13: 86–95.CrossRefGoogle Scholar
  16. Franco, H.C.J., P.C.O. Trivelin, A.C. Vitti, R. Otto, C.E. Faroni, and J.G. Tovajar. 2009. Utilization of boron (10b) derived from fertilizer by sugar cane. Revista Brasileira de Ciência de Solo 33: 1667–1674.CrossRefGoogle Scholar
  17. Ghaffar, A., N. Ehsanullah, S.H. Akbar, K. Khan, R.Q. Jabran, A. Hashmi, and M.A. Ali. 2012. Effect of trench spacing and micronutrients on growth and yield of sugarcane (Saccharum officinarum L.). Australian Journal of Crop Sciences 6: 1–9.Google Scholar
  18. Jaiswal, D., A.P. Souza, S. Larsen, D.S. LeBauer, F.E. Miguez, G. Sparovek, G. Bollero, M.S. Buckeridge, and S.P. Long. 2017. Brazilian sugarcane ethanol as an expandable green alternative to crude oil use. Nature Climate Change 7: 788–792.CrossRefGoogle Scholar
  19. Lindsay, W.L. 1991. Inorganic equilibria affecting micronutrients in soils. In Micronutrients in agriculture, ed. J.J. Mortvedt, 94–112. Wisconsin: Soil Science Society of America.Google Scholar
  20. Marinho, M.F., and G.A.C. Albuquerque. 1981. Effect of copper and zinc on the production of sugarcane in the soils of trays in Alagoas = Efeito do cobre e do zinco na produção de cana de açúcar em solos de tabuleiros de Alagoas. Brasil Açucareiro 6: 41–50. (in Portuguese, with abstract in English).Google Scholar
  21. Mazhar, S. 2016. Impact of zinc and boron application on growth, cane yield and recovery in sugarcane. Life Sciences International Journal 10: 30–37.Google Scholar
  22. Mellis, E.C., J.A. Quaggio, G.R.G. Becari, L.A.J. Teixeira, H. Cantarella, and F.L.F. Dias. 2016. Effect of micronutrients soil supplementation on sugarcane in different production environments: Cane plant cycle. Agronomy Journal 108: 2060–2070.CrossRefGoogle Scholar
  23. Melo, V.F., and L.R.F. Alleoni. 2016. Soil chemistry and mineralogy = Química e Mineralogia do Solo. Viçosa: Sociedade Brasileira de Ciência do Solo. (in Portuguese).Google Scholar
  24. Otto, R., S.A.Q. Castro, E. Mariano, S.G.Q. Castro, H.C.J. Franco, and P.C.O. Trivelin. 2016. Nitrogen use efficiency for sugarcane-biofuel production: What’s next? Bioenergy Research 9: 1272–1289.CrossRefGoogle Scholar
  25. Ridesa. Rede Interuniversitária para o Desenvolvimento do Setor Sucroalcooleiro. https://www.ridesa.com.br/variedades. Accessed 15 November 2018.
  26. Rahman, M.H., S.K. Pal, and F. Falam. 1992. Effect of nitrogen, phosphorus, potassium, sulphur, zinc and manganese nutrients on yield and sucrose content of sugarcane (Saccharum officinarum) in flood-plain soils of Bangladesh. Indian Journal of Agricultural Sciences 62: 450–455.Google Scholar
  27. Ripoli, T.C.C., W.F. Molina Jr., and M.L.C. Rípoli. 2000. Energy potential of sugar cane biomass in Brazil. Scientia Agricola 4: 677–681.CrossRefGoogle Scholar
  28. Ripoli, T.C.C., and M.L.C. Ripoli. 2004. Sugarcane biomass: harvest, energy and environment = Biomassa de cana-de-açúcar: colheita, energia e ambiente. Piracicaba: Barros & Marques, Brazil. (in Portuguese).Google Scholar
  29. Rosolem, C.A., and T. Bıscaro. 2007. Adsorption and leaching of boron in Yellow-Red Latosol = Adsorção e lixiviação de boro em Latossolo Vemelho-Amarelo. Pesquisa Agropecuária Brasileira 42: 1473–1478. (in Portuguese, with abstract in English).CrossRefGoogle Scholar
  30. Sá, A.A., and P.R. Ernani. 2016. Boron leaching decreases with increases on soil pH. Revista Brasileira Ciência do Solo 40: 1–7.CrossRefGoogle Scholar
  31. Silva, N.M., L.H. Carvalho, J.I. Kondo, O.C. Bataglia, and C.A. Abreu. 1995. Ten years of successive fertilization with boron in cotton = Dez anos de sucessivas adubações com boro no algodoeiro. Bragantia 54: 177–185. (in Portuguese, with abstract in English).CrossRefGoogle Scholar
  32. Soil Survey Staff. 2010. Keys to soil taxonomy, 11th ed. Washington, DC: USDA Natural Resources Conservation Service.Google Scholar
  33. Spironello, A., B. Van Raij, C.P. Penatti, H. Cantarella, J.L. Morelli, J. Orlando Filho, et al. 1997. Sugarcane = Cana-de-açúcar. In Recomendações de adubação e calagem para o Estado de São Paulo, ed. B. Van Raij, J.A. Quaggio, and A.M.C. Furlani. Campinas: Brazil. (in Portuguese).Google Scholar
  34. Teixeira Filho, M.C.M., S. Buzetti, C.M.P. Garcia, C.G.S. Benett, M.A.C. Rodrigues, P.R. Maestrelo, T.S. Celestrino, and R.N. Gazola. 2013. Technological quality and agroindustrial productivity of sugarcane submitted to fertilization with zinc = Qualidade tecnológica e produtividade agroindustrial de cana-de-açúcar submetida a adubação com zinco. Semana: Ciências Agrárias 4: 1603–1614. (in Portuguese, with abstract in English).Google Scholar
  35. Vale, F., M.A.G. Araujo, and G.C. Vitti. 2008. Evaluation of nutritional status of micronutrients in areas with sugarcane = Avaliação do estado nutricional dos micronutrientes em áreas com cana-de-açúcar. In FERTBIO, 2008. Anais… Londrina, 2008, 1 CD-ROM.Vries SC (in Portuguese, with abstract in English).Google Scholar
  36. Van Raij, B.V., J.C. Andrade, H. Cantarella, and J.A. Quaggio. 2001. Chemical analysis for fertility evaluation of tropic soils = Análise química para avaliação de fertilidade de solos trópicas. Campinas: Instituto Agronômico de Campinas. (in Portuguese).Google Scholar
  37. Vitti, G.C. 1989. Evaluation and interpretation of sulfur in soil and plant = Avaliação e interpretação do enxofre no solo e na planta. Jaboticabal: Fundação de Apoio A Pesquisa Ensino e Extensão. (in Portuguese).Google Scholar
  38. Vries, S.C., W.J.V. Gerrie, M.K. Van Ittersum, and K.E. Giller. 2010. Resource use efficiency and environmental performance of nine major biofuel crops, processed by first-generation conversion techniques. Biomass and Bioenergy 34: 588–601.CrossRefGoogle Scholar
  39. Wang, J.J., C.W. Kennedy, H.P. Viator, A.E. Arceneaux, and A.J. Guidry. 2009. Zinc fertilization of sugarcane in acid and calcareous soils. Journal American Society Sugar Cane Technologists 25: 49–61.Google Scholar
  40. Wang, Z., Q. Liu, F. Pan, L. Yuan, and X. Yin. 2015. Effects of increasing rates of zinc fertilization on phytic acid and phytic acid/zinc molar ratio in zinc bio-fortified wheat. Field Crops Research 184: 58–64.CrossRefGoogle Scholar

Copyright information

© Society for Sugar Research & Promotion 2019

Authors and Affiliations

  1. 1.Universidade do Oeste Paulista - UNOESTEPresidente PrudenteBrazil
  2. 2.Department of Soil ScienceUniversity of Sao Paulo, “Luiz de Queiroz” College of AgriculturePiracicabaBrazil

Personalised recommendations