Advertisement

Sugar Tech

, Volume 21, Issue 1, pp 71–82 | Cite as

Sugarcane Productivity as a Function of Nitrogen Fertilization and Inoculation with Diazotrophic Plant Growth-Promoting Bacteria

  • Willian Pereira
  • Jailson Silva Sousa
  • Nivaldo Schultz
  • Veronica Massena ReisEmail author
Research Article
  • 116 Downloads

Abstract

Sugarcane ratoons respond to nitrogen fertilizer application, but the N efficiency is low. Diazotrophs applied as a growth promoter bacterium can influence crop yield by several mechanisms, including a greater root growth and higher N absorption. The objective of the present work was to evaluate the stalk and sugar yields, and the economic index of sugarcane as a function of nitrogen fertilization and inoculation with diazotrophic plant growth-promoting bacteria (DPGPB). Two experiments were implemented in areas of two sugarcane mills in the state of São Paulo, Brazil: one in the Diamante Mill and one in the Santa Helena Mill. The experimental design was a randomized complete block with four N-fertilizer doses (0, 50, 100 and 150 kg ha−1), with or without DPGPB inoculation using five replicates. The application of the inoculant promoted a productivity increase in the Diamante Mill for all treatments with N, even in the absence of N-fertilization, while at the Santa Helena Mill that occurred with the 50 kg ha−1 dosage. The inoculation with DPGPB, together with the application of the 50 kg N ha−1 dose, achieved the highest economic return at both mills. The application of the inoculant associated with a low dose of N-fertilizer was profitable and proven feasible for field application. The results evidenced the viability of the technology for sugarcane production, with gains in productivity and a possible reduction in nitrogen fertilization.

Keywords

Inoculant Diazotrophic bacteria Growth promotion Sustainability 

Notes

Acknowledgements

This research was supported by The Coordination of Improvement of Higher Education Personnel—CAPES and to the Fundação Carlos Chagas de Amparo à Pesquisa do Estado do Rio de Janeiro—FAPERJ; for the authors fellowships. To the National Council of Scientific and Technological Development—CNPq—[grant numbers 470824/2013-1 and INCT 456133/2014-2]. Authors would like to thank the Diamante and Santa Helena Mills were the experiments were conducted.

References

  1. Baldani, J.I., B. Pot, G. Kirchhof, E. Falsen, V.L.D. Baldani, F.L. Olivares, B. Hoste, K. Kersters, A. Hartmann, M. Gillis, and J. Dobereiner. 1996. Emended description of Herbaspirillum; inclusion of [Pseudomonas] rubrisubalbicans, a mild plant pathogen, as Herbaspirillum rubrisubalbicans comb. nov.; and classification of a group of clinical isolates (EF group 1) as Herbaspirillum species 3. International Journal of Systematic Bacteriology 46 (3): 802–810.  https://doi.org/10.1099/00207713-46-3-802.CrossRefGoogle Scholar
  2. Baldani, J.I., V.M. Reis, S.S. Videira, L.H. Boddey, and V.L.D. Baldani. 2014. The art of isolating nitrogen-fixing bacteria from non-leguminous plants using N-free semi-solid media: A practical guide for microbiologists. Plant and Soil 384: 413–431.  https://doi.org/10.1007/s11104-014-2186-6.CrossRefGoogle Scholar
  3. Basanta, M.V., D. Dourado-Neto, K. Reichardt, O.O.S. Bacchi, J.C.M. Oliveira, P.C.O. Trivelin, L.C. Timm, T.T. Tominaga, V. Correchel, F.A.M. Cássaro, L.F. Pires, and J.R. de Macedo. 2003. Management effects on nitrogen recovery in a sugarcane crop grown in Brazil. Geoderma 116: 235–248.  https://doi.org/10.1016/S0016-7061(03)00103-4.CrossRefGoogle Scholar
  4. Bashan, Y., L.E. De-Bashan, S.R. Prabhu, and J.P. Hernandez. 2014. Advances in plant growth-promoting bacterial inoculant technology: Formulations and practical perspectives (1998–2013). Plant and Soil 378: 1–33.  https://doi.org/10.1007/s11104-013-1956-x.CrossRefGoogle Scholar
  5. Cantarella, H., P.C.O. Trivelin, and A.C. Vitti. 2007. Nitrogênio e enxofre na cultura da cana-de-açúcar. In Nitrogênio e Enxofre na Agricultura Brasileira, ed. T. Yamada, S.R.S. Abdalla, and G.C. Vitti, 255–412. Piracicaba: IPNI.Google Scholar
  6. Cavalcante, V.A., and J. Dobereiner. 1988. A new acid-tolerant nitrogen-fixing bacterium associated with sugarcane. Plant and Soil 108 (1): 23–31.  https://doi.org/10.1007/BF02370096.CrossRefGoogle Scholar
  7. Chalam, A.V., C. Sasikala, C.V. Ramana, N.R. Uma, and P.R. Rao. 1997. Effect of pesticides on the diazotrophic growth and nitrogenase activity of purple nonsulfur bacteria. Bulletin of Environmental Contamination and Toxicology 58 (3): 463–468.  https://doi.org/10.1007/s001289900357.CrossRefGoogle Scholar
  8. CONAB. 2016. Ministério da Agricultura. Companhia Nacional de Abastecimento. Acompanhamento da safra brasileira de cana-de-açúcar. http://www.conab.gov.br/. Accessed 5 Apr 2016.
  9. Crespo, J.M., J.L. Boiardi, and M.F. Luna. 2011. Mineral phosphate solubilization activity of Gluconacetobacter diazotrophicus under P-limitation and plant root environment. Agricultural Sciences 2 (1): 16–22.  https://doi.org/10.4236/as.2011.21003.CrossRefGoogle Scholar
  10. FAO. 2016. Organização das Nações Unidas para Agricultura e Alimentação. FAOSTAT. http://faostat3.fao.org. Accessed 12 Dec 2016.
  11. Fernandes, A.C. 2003. Cálculos na agroindústria de cana de açúcar. In: 2nd edn, 240. Piracicaba: STAB.Google Scholar
  12. Fernandes, A.C. 2011. Cálculos na agroindústria de cana de açúcar. Piracicaba: STAB.Google Scholar
  13. Fernandes Júnior, P.I., T.G. Rohr, P.J. Oliveira, G.R. Xavier, and N.G. Rumjanek. 2009. Polymers as carriers for rhizobial inoculant formulations. Pesquisa Agropecuária Brasileira 44 (9): 1184–1190.  https://doi.org/10.1590/S0100-204X2009000900017.CrossRefGoogle Scholar
  14. Fischer, D., B. Pfitzner, M. Schmid, J.L. Simões-Araújo, V.M. Reis, W. Pereira, E. Ormeño-Orrillo, B. Hai, A. Hofmann, M. Schloter, E. Martinez-Romero, J.I. Baldani, and A. Hartmann. 2012. Molecular characterisation of the diazotrophic bacterial community in uninoculated and inoculated field-grown sugarcane (Saccharum sp.). Plant and Soil 356: 83–99.  https://doi.org/10.1007/s11104-011-0812-0.CrossRefGoogle Scholar
  15. Fortes, C., P.C.O. Trivelin, A.C. Vitti, R. Otto, H.C.J. Franco, and C.E. Faroni. 2013. Stalk and sucrose yield in response to nitrogen fertilization of sugarcane under reduced tillage. Pesquisa Agropecuária Brasileira 48 (1): 88–96.  https://doi.org/10.1590/S0100-204X2013000100012.CrossRefGoogle Scholar
  16. Franco, H.C.J., R. Otto, C.E. Faroni, A.C. Vitti, E.C.A. Oliveira, and P.C.O. Trivelin. 2011. Nitrogen in sugarcane derived from fertilizer under Brazilian field conditions. Field Crops Research 121 (1): 29–41.  https://doi.org/10.1016/j.fcr.2010.11.011.CrossRefGoogle Scholar
  17. Franco, H.C.J., P.C.O. Trivelin, C.E. Faroni, G.C. Vitti, and R. Otto. 2010. Stalk yield and technological attributes of planted cane as related to nitrogen fertilization relacionados com a adubação nitrogenada. Scientia Agricola 67 (5): 579–590.  https://doi.org/10.1590/S0103-90162010000500012.CrossRefGoogle Scholar
  18. Fuentes-Ramírez, L.E., J. Caballero-Mellado, J. Sepúlveda, and E. Martínez-Romero. 1999. Colonization of sugarcane by Acetobacter diazotrophicus is inhibited by high N-fertilization. FEMS Microbiology Ecology 29 (2): 117–128.  https://doi.org/10.1016/S0168-6496(98)00125-1.CrossRefGoogle Scholar
  19. Gírio, L.A.da S., F.L.F. Dias, V.M. Reis, S. Urquiaga, N. Schultz, D. Bolonhezi, and M.A. Mutton. 2015. Bactérias promotoras de crescimento e adubação nitrogenada no crescimento inicial de cana-de-açúcar proveniente de mudas pré-brotadas. Pesquisa Agropecuaria Brasileira 50 (1): 33–43.  https://doi.org/10.1590/S0100-204X2015000100004.CrossRefGoogle Scholar
  20. Good, A.G., A.K. Shrawat, and D.G. Muench. 2004. Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production? Trends in Plant Science 9 (12): 597–605.  https://doi.org/10.1016/j.tplants.2004.10.008.CrossRefGoogle Scholar
  21. Govindarajan, M., J. Balandreau, R. Muthukumarasamy, G. Revathi, and C. Lakshminarasimhan. 2006. Improved yield of micropropagated sugarcane following inoculation by endophytic Burkholderia vietnamiensis. Plant and Soil 280: 239–252.  https://doi.org/10.1007/s11104-005-3223-2.CrossRefGoogle Scholar
  22. IFA. 2013. Assessment of fertilizer use by crop at the global level 2010-2010/11. https://www.fertilizer.org/images/Library_Downloads/AgCom.13.39%20-%20FUBC%20assessment%202010.pdf. Accessed 8 Apr 2016.
  23. Lisboa, C.C., K. Butterbach-Bahl, M. Mauder, and R. Kiese. 2011. Bioethanol production from sugarcane and emissions of greenhouse gases—Known and unknowns. GCB Bioenergy 3 (4): 277–292.  https://doi.org/10.1111/j.1757-1707.2011.01095.x.CrossRefGoogle Scholar
  24. Lo, C.-C. 2010. Effect of pesticides on soil microbial community. Journal of Environmental Science and Health, Part B 45 (5): 348–359.  https://doi.org/10.1080/03601231003799804.CrossRefGoogle Scholar
  25. Macedo, I.C., J.E.A. Seabra, and J.E.A.R. Silva. 2008. Green house gases emissions in the production and use of ethanol from sugarcane in Brazil: The 2005/2006 averages and a prediction for 2020. Biomass and Bioenergy 32 (7): 582–595.  https://doi.org/10.1016/j.biombioe.2007.12.006.CrossRefGoogle Scholar
  26. Madhaiyan, M., S. Poonguzhali, K. Hari, V.S. Saravanan, and T. Sa. 2006. Influence of pesticides on the growth rate and plant-growth promoting traits of Gluconacetobacter diazotrophicus. Pesticide Biochemistry and Physiology 84 (2): 143–154.  https://doi.org/10.1016/j.pestbp.2005.06.004.CrossRefGoogle Scholar
  27. Marcos, F.C.C., R.de P.F. Iório, A.P.D. da Silveira, R.V. Ribeiro, E.C. Machado, and A.M.M.de A. Lagôa. 2016. Endophytic bacteria affect sugarcane physiology without changing plant growth. Bragantia 75 (1): 1–9.  https://doi.org/10.1590/1678-4499.256.CrossRefGoogle Scholar
  28. Mariano, E., J.M. Leite, M.X. Vieira-Megda, I.A. Ciampitti, A.C. Vitti, C.E. Faroni, H.C.J. Franco, and P.C.O. Trivelin. 2016. Biomass and nutrient content by sugarcane as affected by fertilizer nitrogen sources. Crop Science 56 (3): 1234–1244.  https://doi.org/10.2135/cropsci2015.06.0349.CrossRefGoogle Scholar
  29. Medeiros, A.F.A., J.C. Polidoro, and V.M. Reis. 2006. Nitrogen source effect on Gluconacetobacter diazotrophicus colonization of sugarcane (Saccharum spp.). Plant and Soil 279: 141–152.  https://doi.org/10.1007/s11104-005-0551-1.CrossRefGoogle Scholar
  30. Megda, M.X.V., P.C.O. Trivelin, H.C.J. Franco, R. Otto, and A.C. Vitti. 2012. Eficiência agronômica de adubos nitrogenados em soqueira de cana–de–açúcar colhida sem queima. Pesquisa Agropecuaria Brasileira 47 (12): 1681–1690.  https://doi.org/10.1590/S0100-204X2012001200002.CrossRefGoogle Scholar
  31. Muchow, R.C., M.J. Robertson, and A.W. Wood. 1996. Growth of sugarcane under high input conditions in tropical Australia. II. Sucrose accumulation and commercial yield. Field Crops Research 48 (1): 27–36.  https://doi.org/10.1016/0378-4290(96)00042-1.CrossRefGoogle Scholar
  32. Muñoz-Rojas, J., and J. Caballero-Mellado. 2003. Population dynamics of Gluconacetobacter diazotrophicus in sugarcane cultivars and its effect on plant growth. Microbial Ecology 46 (4): 454–464.  https://doi.org/10.1007/s00248-003-0110-3.CrossRefGoogle Scholar
  33. Muthukumarasamy, R., M. Govindarajan, M. Vadivelu, and G. Revathi. 2006. N-fertilizer saving by the inoculation of Gluconacetobacter diazotrophicus and Herbaspirillum sp. in micropropagated sugarcane plants. Microbiological Research 161 (3): 238–245.  https://doi.org/10.1016/j.micres.2005.08.007.CrossRefGoogle Scholar
  34. Muthukumarasamy, R., G. Revathi, and C. Lakshminarasimhan. 1999. Influence of N fertilisation on the isolation of Acetobacter diazotrophicus and Herbaspirillum spp. from Indian sugarcane varieties. Biology and Fertility of Soils 29 (2): 157–164.  https://doi.org/10.1007/s003740050539.CrossRefGoogle Scholar
  35. Nogueira, A.R.A., and G.B. Souza. 2005. Manual de laboratório: solo, água, nutrição vegetal, nutrição animal e alimentos. São Carlos, SP: Embrapa Pecuária Sudeste.Google Scholar
  36. Oliveira, A.L.M., E.L. Canuto, E.E. Silva, V.M. Reis, and J.I. Baldani. 2004. Survival of endophytic diazotrophic bacteria in soil under different moisture levels. Brazilian Journal of Microbiology 35 (4): 295–299.  https://doi.org/10.1590/S1517-83822004000300005.CrossRefGoogle Scholar
  37. Oliveira, A.L.M., E.L. Canuto, S. Urquiaga, V.M. Reis, and J.I. Baldani. 2006. Yield of micropropagated sugarcane varieties in different soil types following inoculation with diazotrophic bacteria. Plant and Soil 284: 23–32.  https://doi.org/10.1007/s11104-006-0025-0.CrossRefGoogle Scholar
  38. Oliveira, R.P., N. Schultz, R.C. Monteiro, W. Pereira, A.P. Araujo, S. Urquiaga, and V.M. Reis. 2016. Growth analysis of sugarcane inoculated with diazotrophic bacteria and nitrogen fertilization. African Journal of Agricultural Research 11 (30): 2786–2795.  https://doi.org/10.5897/AJAR2016.11141.CrossRefGoogle Scholar
  39. Prado, H. 2005. Ambientes de produção de cana-de-açúcar na região Centro-Sul do Brasil. https://www.ipni.net/ppiweb/brazil.nsf/87cb8a98bf72572b8525693e0053ea70/7759ddc6878ca7eb83256d05004c6dd1/$FILE/Enc12-17-110.pdf. Accessed 10 Apr 2016.
  40. Raizer, A.J., and R. Vencovsky. 1999. Estabilidade fenotípica de novas variedades de cana-de-açúcar para o Estado de São Paulo. Pesquisa Agropecuaria Brasileira 34 (12): 2241–2246.  https://doi.org/10.1590/S0100-204X1999001200010.CrossRefGoogle Scholar
  41. Reis Junior, F.B., V.M. Reis, S. Urquiaga, and J. Dobereiner. 2000. Influence of nitrogen fertilisation on the population of diazotrophic bacteria Herbaspirillum spp. and Acetobacter diazotrophicus in sugarcane (Saccharum spp.). Plant and Soil 219: 153–159.  https://doi.org/10.1023/A:1004732500983.CrossRefGoogle Scholar
  42. Reis, V.M., J.I. Baldani, and S. Urquiaga. 2009. Recomendação de uma mistura de estirpes de cinco bactérias fixadoras de nitrogênio para inoculação de cana-de-açúcar. Seropédica: Embrapa Agrobiologia, 2009. Circular Técnica, 30. https://www.infoteca.cnptia.embrapa.br/infoteca/bitstream/doc/664311/1/CIT3009.pdf. Accessed 15 Apr 2016.
  43. Rhein, A.F.L., R.P. Pincelli, M.T. Arantes, W.J. Dellabiglia, O.T. Kölln, and M.A. Silva. 2016. Technological quality and yield of sugarcane grown under nitrogen doses via subsurface drip fertigation. Revista Brasileira de Engenharia Agrícola e Ambiental 20 (3): 209–214.  https://doi.org/10.1590/1807-1929/agriambi.v20n3p209-214.CrossRefGoogle Scholar
  44. Robinson, N., R. Brackin, K. Vinall, F. Soper, J. Holst, H. Gamage, C. Paungfoo-Lonhienne, H. Rennenberg, P. Lakshmanan, and S. Schmidt. 2011. Nitrate paradigm does not hold up for sugarcane. PLoS ONE 6 (4): e19045.  https://doi.org/10.1371/journal.pone.0019045.CrossRefGoogle Scholar
  45. Rolim, G.S., P.C. Sentelhas, and V. Barbieri. 1998. Planilhas no ambiente EXCEL™ para os cálculos de Balanços Hídricos: Normal, seqüencial, de Cultura e de produtividade real e potencial. Revista Brasileira de Agrometeorologia 6 (1): 133–137.Google Scholar
  46. Santos, S.G., F.S. Ribeiro, C.S. da Fonseca, W. Pereira, L.A. Santos, and V.M. Reis. 2017. Development and nitrate reductase activity of sugarcane inoculated with five diazotrophic strains. Archives of Microbiology 199 (6): 863–873.  https://doi.org/10.1007/s00203-017-1357-2.CrossRefGoogle Scholar
  47. Schultz, N., R.F. Morais, J.A. Silva, R.B. Baptista, R.P. Oliveira, J.M. Leite, W. Pereira, J.B. Carneiro Jr., B.J.R. Alves, J.I. Baldani, R.M. Boddey, S. Urquiaga, and V.M. Reis. 2012. Avaliação agronômica de variedades de cana-de-açúcar inoculadas com bactérias diazotróficas e adubadas com nitrogênio. Pesquisa Agropecuaria Brasileira 47 (2): 261–268.  https://doi.org/10.1590/S0100-204X2012000200015.CrossRefGoogle Scholar
  48. Schultz, N., W. Pereira, V.M. Reis, and S. Urquiaga. 2016. Produtividade e diluição isotópica de 15N em cana-de-açúcar inoculada com bactérias diazotróficas. Pesquisa Agropecuaria Brasileira 51 (9): 1594–1601.  https://doi.org/10.1590/S0100-204X2016000900059.CrossRefGoogle Scholar
  49. Schultz, N., J.A. da Silva, J.S. Sousa, R.C. Monteiro, R.P. Oliveira, V.A. Chaves, W. Pereira, M.F. Silva, J.I. Baldani, R.M. Boddey, V.M. Reis, and S. Urquiaga. 2014. Inoculation of sugarcane with diazotrophic bacteria. Revista Brasileira de Ciência do Solo 38 (2): 407–414.  https://doi.org/10.1590/S0100-06832014000200005.CrossRefGoogle Scholar
  50. Signor, D., C.E.P. Cerri, and R. Conant. 2013. N2O emissions due to nitrogen fertilizer applications in two regions of sugarcane cultivation in Brazil. Environmental Research Letters 8: 15013.  https://doi.org/10.1088/1748-9326/8/1/015013.CrossRefGoogle Scholar
  51. Silva, M.F., P.J. Oliveira, G.R. Xavier, N.G. Rumjanek, and V.M. Reis. 2009. Inoculantes formulados com polímeros e bactérias endofíticas para a cultura da cana-de-açúcar. Pesquisa Agropecuaria Brasileira 44 (11): 1437–1443.  https://doi.org/10.1590/S0100-204X2009001100010.CrossRefGoogle Scholar
  52. Siqueira Neto, M., M.V. Galdos, B.J. Feigl, C.E.P. Cerri, and C.C. Cerri. 2016. Direct N2O emission factors for synthetic N-fertilizer and organic residues applied on sugarcane for bioethanol production in Central-Southern Brazil. GCB Bioenergy 8 (2): 269–280.  https://doi.org/10.1111/gcbb.12251.CrossRefGoogle Scholar
  53. Souza, R.S.C., V.K. Okura, J.S.L. Armanhi, B. Jorrín, N. Lozano, M.J. da Silva, M. González-Guerrero, L.M. de Araújo, N.C. Verza, H.C. Bagheri, J. Imperial, and P. Arruda. 2016. Unlocking the bacterial and fungal communities assemblages of sugarcane microbiome. Scientific Reports 6: 28774.  https://doi.org/10.1038/srep28774.CrossRefGoogle Scholar
  54. Suman, A., A. Gaur, A.K. Shrivastava, and R.L. Yadav. 2005. Improving sugarcane growth and nutrient uptake by inoculating Gluconacetobacter diazotrophicus. Plant Growth Regulation 47: 155–162.  https://doi.org/10.1007/s10725-005-2847-9.CrossRefGoogle Scholar
  55. Tanimoto, T. 1969. The press method of cane analysis. Hawaiian Planters Recorder 51: 133–150. https://www.assct.com.au/media/pdfs/1986_pa_g6.pdf. Accessed 6 Jan 2008.
  56. Thorburn, P.J., J.S. Biggs, A.J. Webster, and I.M. Biggs. 2011. An improved way to determine nitrogen fertiliser requirements of sugarcane crops to meet global environmental challenges. Plant and Soil 339: 51–67.  https://doi.org/10.1007/s11104-010-0406-2.CrossRefGoogle Scholar
  57. Tripti, A., V. Kumar, and Anshumali. 2015. Effect of commercial pesticides on plant growth-promoting activities of Burkholderia sp. strain L2 isolated from rhizosphere of Lycopersicon esculentum cultivated in agricultural soil. Toxicological and Environmental Chemistry 97 (9): 1180–1189.  https://doi.org/10.1080/02772248.2015.1093632.CrossRefGoogle Scholar
  58. ÚNICA. 2016. União das Indústrias de Cana de Açúcar. UNICADATA. http://www.unicadata.com.br/. Accessed 8 Feb 2016.
  59. Unkovich, M., D. Herridge, M. Peoples, G. Cadisch, B. Boddey, K. Giller, B. Alves, and P. Chalk. 2008. Measuring plant-associated nitrogen fixation in agricultural systems. ACIAR Monograph No. 136, Australia. http://aciar.gov.au/files/node/10169/mn136_measuring_plant_associated_nitrogen_fixation_19979.pdf. Accessed 9 Dec 2017.
  60. Urquiaga, S., K.H.S. Cruz, and R.M. Boddey. 1992. Contribution of nitrogen fixation to sugarcane: Nitrogen-15 and nitrogen-balance estimates. Soil Science Society of America Journal 56 (1): 105–114.  https://doi.org/10.2136/sssaj1992.03615995005600010017x.CrossRefGoogle Scholar
  61. Urquiaga, S., R.P. Xavier, R.F. Morais, R.B. Batista, N. Schultz, J.M. Leite, J. Maia, K.P. Barbosa, A.S. Resende, B.J.R. Alves, and R.M. Boddey. 2012. Evidence from field nitrogen balance and 15N natural abundance data for the contribution of biological N2 fixation to Brazilian sugarcane varieties. Plant and Soil 356: 5–21. 10.1007/s11104-011-1016-3.CrossRefGoogle Scholar
  62. Vallis, I., and B.A. Keating. 1994. Uptake and loss of fertilizer and soil nitrogen in sugarcane crops. In Proceedings of Australian Society of Sugar Cane Technologists, conference on Watson Ferguson, Journsville. https://www.assct.com.au/media/pdfs/1994_pa_ag15.pdf. Accessed 12 Jun 2016.
  63. van Raij, B., J.C. Andrade, H. Cantarella, and J.A. Quaggio. 2001. Análise química para avaliação da fertilidade de solos tropicais. Campinas: IAC.Google Scholar
  64. Vargas, L., A.B.S. Brígida, J.P. Mota Filho, T.G. de Carvalho, C.A. Rojas, D. Vaneechoutte, M. Van Bel, L. Farrinelli, P.C.G. Ferreira, K. Vandepoele, and A.S. Hemerly. 2014. Drought tolerance conferred to sugarcane by association with Gluconacetobacter diazotrophicus: A transcriptomic view of hormone pathways. PLoS ONE 9 (12): e114744.  https://doi.org/10.1371/journal.pone.0114744.CrossRefGoogle Scholar
  65. Vitti, A.C., P.C.O. Trivelin, G.J.C. Gava, C.P. Penatti, I.R. Bologna, C.E. Faroni, and H.C.J. Franco. 2007. Produtividade da cana-de-açúcar relacionada ao nitrogênio residual da adubação e do sistema radicular. Pesquisa Agropecuaria Brasileira 42 (2): 249–256.  https://doi.org/10.1590/S0100-204X2007000200014.CrossRefGoogle Scholar
  66. Yeoh, Y.K., C. Paungfoo-Lonhienne, P.G. Dennis, N. Robinson, M.A. Ragan, S. Schmidt, and P. Hugenholtz. 2016. The core root microbiome of sugarcanes cultivated under varying nitrogen fertilizer application. Environmental Microbiology 18 (5): 1338–1351.  https://doi.org/10.1111/1462-2920.12925.CrossRefGoogle Scholar

Copyright information

© Society for Sugar Research & Promotion 2018

Authors and Affiliations

  1. 1.Universidade Federal Rural do Rio de Janeiro - Field StationRio de JaneiroBrazil
  2. 2.Universidade Federal Rural do Rio de JaneiroRio de JaneiroBrazil
  3. 3.Embrapa AgrobiologiaRio de JaneiroBrazil

Personalised recommendations