Advertisement

Sugar Tech

, Volume 21, Issue 1, pp 113–121 | Cite as

Effect of Silicon and Nitrogen on Diatraea tabernella Dyar in Sugarcane in Panama

  • Randy AtencioEmail author
  • François-Régis Goebel
  • Abby Guerra
Research Article
  • 34 Downloads

Abstract

The main pest of sugarcane in Panama is the stem borer, Diatraea tabernella Dyar (Lepidoptera: Pyralidae) which can cause significant losses in cane biomass and sugar. The objective of this study was to determine the influence of two silicon- and nitrogen-based products applied at two rates on borer infestation. To compare the effect of these two amendments, a completely randomized block design was established comprising four treatments with four replicates. This experiment included 16 sampling units of 32 m2 each. Measurements of borer damage, agronomic parameters, sugar content and for silicon, the content in stalk material were conducted to evaluate the impact of different silicon and nitrogen treatments applied in the field. The use of silicon-based products reduced internodes borer (% IB) by up to 50%, confirming the role of silicon in damage reduction. The use of high doses of nitrogen doses resulted in an increase in the damage level from 5.2% (control plots with 110 kg N/ha) to 6.9% IB (treatment with the highest dose of 210 kg N/ha).

Keywords

Sugarcane Silicon Nitrogen Stem borers Infestation Yield losses 

Notes

Acknowledgements

SENACYT Panamá/SFERE provided the Ph.D. Grant and CALESA (Compañía Azucarera La Estrella, S.A.) provided technical and logistical support. Guillermo Ramirez (Department of Fields), Juan Pablo Erazo (Department of Fields), Reinaldo Meneses (Department of Fields), Greisy Borrero (Laboratory of Quality and Sugar) and Amed Ramos (field technician) in particular are thanked for their support. We are grateful to Bioiberica S.A. for providing the product Armurox® (Liquid silicon) and Ecotec Panamá S.A. for providing Tecnosilix® (Granular silicon). We also would like to express our gratitude to William White from USDA-ARS (United States Department of Agriculture-Agricultural Research Service) for reviewing this manuscript.

Funding

Randy Atencio has received research grants from Secretaria Nacional de Ciencia y Tecnologìa de Panamá (SENACYT). François-Regis Goebel has received research grants from Centre de coopération internationale en recherche agronomique pour le développement (CIRAD). Abby Guerra have received research grants from Biotechnology Laboratory, Sugar Company, La Estrella S.A., Panama.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Ali, A.I., N. Jiang, F. Schulthess, C.K.P.O. Ogol, and C.O. Omwega. 2006. Effect of nitrogen fertilizer level on infestations of lepidopterous stemborers and yields of maize in Zanzibar. Annales de la Société Entomologique de France 42(3–4): 481–486.CrossRefGoogle Scholar
  2. Alvarez, J., V. López, C. Antúnez, E. Muller, G. Schaefer, G. Drescher, and M. López. 2014. Aplicación de potasio en variedades de caña de azúcar: efectos en la productividad y en el ataque del taladrador de la caña. Investigación Agraria 14(2): 93–100.Google Scholar
  3. Amador, O., J. Cerdá, S. Sancho, and R. Hernández. 2013. Aumento del potencial productivo en caña de azúcar por aplicación de Armurox® como fuente de silicio biodisponible. In XIX Congreso de la Asociación de Técnicos Azucareros de Centroamérica (ATACA), 43–54.Google Scholar
  4. Anderson, D.L., D.B. Jones, and G.H. Snyder. 1987. Response of a rice-sugarcane rotation to calcium silicate slag on Everglades Histosols. Agronomy Journal 79: 531–535.CrossRefGoogle Scholar
  5. Arshad, M.J., S. Freed, S. Akbar, M. Akmal, and H.T. Gul. 2013. Nitrogen fertilizer application in maize and its impact on the development of Chilo partellus (Lepidoptera: Pyralidae). Pakistan Journal of Zoology 45(1): 141–147.Google Scholar
  6. Atkinson, P.R., and K.J. Nuss. 1989. Associations between host-plant nitrogen and infestations of the sugarcane borer, Eldana saccharina Walker (Lepidoptera: Pyralidae). Bulletin of Entomological Research 79(3): 489–506.CrossRefGoogle Scholar
  7. Awadalla, S.S., F.E. Abdallah, and N. El-Mashaly. 2009. Effect of some agronomic practices on the infestation with the sugar cane stem borer, Sesamia cretica Led. Lepidoptera: Noctuidae. Mansoura University Journal of Agricultural Sciences 34 (8): 9117–9125.Google Scholar
  8. Barrantes, J., R. Alfaro, and R. Ocampo. 2013. Evaluación de cinco fuentes de silicio en caña de azúcar en combinación con materia orgánica; en un suelo Ultisol de la Región Sur de Costa Rica, 2012. In XIX Congreso de la Asociación de Técnicos Azucareros de Centroamérica (ATACA), 71–76.Google Scholar
  9. Bortoli, S.A., H.O.S. Dória, N.M.M.S. Albergaria, and M.V. Botti. 2005. Biological aspects and damage of Diatraea saccharalis (Lepidoptera: Pyralidae) in sorghum, under different doses of nitrogen and potassium. Ciência e Agrotecnologia 29: 267–273.CrossRefGoogle Scholar
  10. Camargo, M., A. Júnior, P. Wyler, and G. Henrique. 2010. Silicate fertilization in sugarcane: Effects on soluble silicon in soil, uptake and occurrence of stalk borer (Diatraea saccharalis). International Union of Soil Sciences (IUSS), c/o Institut für Bodenforschung, Universität für Bodenkultur. In 19 th Worl Congress of Soil Solutions for a Changing Worl, 16 August 2010, Brisbane, Australia, 259–262.Google Scholar
  11. de Camargo, M.S., G. Henrique, and P. Wyler. 2014. Silicate fertilization of sugarcane cultivated in tropical soils. Field Crops Research 167: 64–75.CrossRefGoogle Scholar
  12. de Camargo, M.S., B.K.L. Bezerra, A.C. Vitti, M.A. Silva, and A.L. Oliveira. 2017. Silicon fertilization reduces the deleterious effects of water deficit in sugarcane. Journal of Soil Science and Plant Nutrition 17(1): 99–111.Google Scholar
  13. Calatayud, P.A., E. Njuguna, and G. Juma. 2016. Silica in insect–plant interactions. Entomology, Ornithology & Herpetology 5: e125.Google Scholar
  14. CENICAÑA. 2012. Barrenadores del tallo: Diatraea saccharalis y Diatraea indigenella. Sanidad Vegetal. CENICAÑA (Centro de Investigación de la Caña de Azúcar de Colombia). http://www.cenicana.org/investigacion/variedades/sanidad_vegetal.php?opcion=2&opcion2=1. Accessed 27 June 2016.
  15. Chaves, M., A. Rodriguez, J. Salazar, and C. Sáenz. 2000. Plagas y fitosanidad de la caña de azúcar en Costa Rica. 5 to Congreso ATALAC13 avo Congreso del ATACA14 avo Congreso de ATACORI, 64.Google Scholar
  16. Chen, Y., J.R. Ruberson, and D.M. Olson. 2008. Nitrogen fertilization rate affects feeding, larval performance, and oviposition preference of the beet armyworm, Spodoptera. exigua, on cotton. Entomologia Experimentalis et Applicata 126: 244–255.CrossRefGoogle Scholar
  17. Elawad, S.H., G.J. Gascho, and J.J. Street. 1982. Response of sugarcane to silicate source and rate. Growth and yield. Agronony Journal 74: 481–484.CrossRefGoogle Scholar
  18. Esquivel, R. 1980. Basic studies on sugarcane resistant varieties to the giant borer (Castnia licus Drury) in Panama. Entomology Newsletter, International Society of Sugarcane Technologists 8: 8–9.Google Scholar
  19. Falco, M.C., P.A.S. Marbach, P. Pompermayer, F.C.C. Lopes, and M.C. Silva-Filho. 2001. Mechanisms of sugarcane response to herbivory. Genetics and Molecular Biology 24(1–4): 113–122.CrossRefGoogle Scholar
  20. Gamonal, H. 1989. El barrenador gigante de la caña de azúcar: Castnia licus (Lepid.: Castniidae). Revista Peruana de Entomología 32: 47–49.Google Scholar
  21. Gómez, L.A., E.M. Quintero, J.A. Jurado, V. Obando, J.E. Larrahondo, and A. Gonzalez. 2009. Una versión actualizada de las pérdidas que causan los barrenadores de la caña de azúcar en el valle del río Cauca. In Memorias, VIII Congreso de la Sociedad Colombiana de Técnicos de la Caña de Azúcar (TECNICAÑA), Cali, Colombia, 136–143.Google Scholar
  22. Gershenson, J. 1984. Changes in the levels of plant secondary metabolites under water and nutrient stress. Recent Advances in Phytochemistry 0079–9920(18): 273–320.Google Scholar
  23. Hartley, S.E., and J.L. De Gabriel. 2016. The ecology of herbivore-induced silicon defences in grasses. Functional Ecology 30: 1311–1322.CrossRefGoogle Scholar
  24. Keeping, M., O.L. Kvedaras, and A.G. Bruton. 2009. Epidermal silicon in sugarcane: Cultivar differences and role in resistance to sugarcane borer Eldana saccharina. Environmental and Experimental Botany 66(1): 54–60.CrossRefGoogle Scholar
  25. Keeping, M.G., N. Miles, and C. Sewpersad. 2014. Silicon reduces impact of plant nitrogen in promoting stalk borer (Eldana saccharina) but not sugarcane thrips (Fulmekiola serrata) infestations in sugarcane. Frontiers in Plant Science 5: 289.CrossRefGoogle Scholar
  26. Keeping, M.G. 2017. Uptake of silicon by sugarcane from applied sources may not reflect plant-available soil silicon and total silicon content of sources. Frontiers in Plant Science 8: 760.CrossRefGoogle Scholar
  27. Lu, Z.-X., X.-P. Yu, K.-L. Heong, and C. Hu. 2007. Effect of nitrogen fertilizer on herbivores and its stimulation to major insect pests in rice. Rice Science 14(1): 56–66.CrossRefGoogle Scholar
  28. Matichenkov, V.V., and D.V. Calvert. 2002. Silicon as a beneficial element for sugarcane. Journal American Society of Sugarcane Technologists 22: 21–30.Google Scholar
  29. Matson, W.J. 1980. Herbivory in relation to plant nitrogen content. Annual Review Ecology and Systematics 11: 119–161.CrossRefGoogle Scholar
  30. Mcneill, S., and T.R.E. Southwood. 1978. The role of nitrogen in the development of insect/plant relationships. In Biochemical aspects of plant and animal co-evolution, ed. J.B. Harborne, 77–98. London: Academic Press.Google Scholar
  31. Narvaes, L. 1989. Caña de Azúcar. In Manejo Integrado de Plagas Insectiles en la Agricultura: Estado Actual y Futuro, eds. K. Andrews and J. Quezada, 623 p. Honduras: Escuela Agrícola Panamericana. El Zamorano.Google Scholar
  32. Nikpay, A. 2016. Improving biological control of stalk borers in sugarcane by applying silicon as a soil amendment. Journal of Plant Protection Research 56 (4): 394–401.CrossRefGoogle Scholar
  33. Pandey, S.K. 2014. Effect of nitrogen levels on the incidence of stalk borer (Chilo Auricilius Dudgeon) in sugarcane varieties. Agricultural Science Digest 34(2): 134–136.CrossRefGoogle Scholar
  34. Pannuti, L. 2012. Incidência de Diatraea saccharalis Fabr. 1794 (Lepidoptera: Crambidae) e Mahanarva fimbriolata Stal, 1854 (Hemiptera: Cercopidae), produtividade e qualidade tecnológica da cana-de-açúcar em função da irrigação e da fertilização nitrogenada, Universidade Estadual Paulista, 89 p.Google Scholar
  35. Pannuti, L.E.R., E.L.L. Baldin, G.J.C. Gava, O.T. Kolln, and J.C.S. Cruz. 2013. Damages caused by the borer-rot complex to the productivity and quality of sugarcane fertigated with nitrogen doses. Pesquisa Agropecuária Brasileira 48: 381–387.CrossRefGoogle Scholar
  36. Pannuti, L.E., E.L.L. Baldin, G.J. Gava, J.P.G.F. Silva, E. Souza, and O.T. Kölln. 2015. Interaction between N-fertilizer and water availability on borer-rot complex in sugarcane. Bragantia 74(1): 75–83.CrossRefGoogle Scholar
  37. Parra-Terraza, S., G.A. Baca-Castillo, R. Carrillo-González, J. Kohashi-Shibata, A. Martínez-Garza, and C. Trejo-López. 2004. Comparación de tres métodos de análisis de silicio en tejido foliar de pepino (Comparison of three methods of silicon analysis in cucumber leaf tissue). Terra Latinoamericana 22(4): 401–407.Google Scholar
  38. Pérez, O., F. Hernández, J. Marquez, J. Acan, C. Martinez, C. Garcia, J. Caballero, and J. Tayun. 2012. Evaluación de Sílice en Variedades de Caña de Azúcar en Suelos Derivados de Ceniza Volcánica de Guatemala, [Archivos De Agronomía], 235–243. Guatemala: Cengicaña.Google Scholar
  39. Reynolds, O.L., M.P. Padula, R. Zeng, and G.M. Gurr. 2016. Silicon: potential to promote direct and indirect effects on plant defense against arthropod pests in agriculture. Frontiers in Plant Science 7: 744.CrossRefGoogle Scholar
  40. Rodriguez, A., C. Sáenz, J. Salazar, D. Alfaro, and R. Oviedo. 1999. Manejo Integrado del Barrenador Gigante de la Caña de Azúcar Castnia licus (Durry). En: Participación de DIECA en el XI Congreso Nacional Agronómico y de Recursos Naturales. San José, Costa Rica. LAICA-DIECA, 151.Google Scholar
  41. Sáenz, C., M. Chaves, D. Alfaro, A. Rodríguez, J. Salazar, and R. Oviedo. 2000. Información y transferencia de tecnología un mejor manejo de los recursos: aplicaciones humanas para el control integrado de plagas en caña en Costa Rica. In 5 to Congreso ATALAC13 avo Congreso del ATACA14 avo Congreso de ATACORI, 64.Google Scholar
  42. Sanches, P.A., F. Santos, M.F.G.V. Peñaflor, and J.M.S. Bento. 2017. Direct and indirect resistance of sugarcane to Diatraea saccharalis induced by jasmonic acid. Bulletin of Entomological Research 24: 1–11.Google Scholar
  43. Scriber, J.M. 1984. Nitrogen nutrition in plants and insect invasion. In Nitrogen in crop production, ed. R.D. Hauck, 175–228. Madison, WI: American Society of Agronomy.Google Scholar
  44. Setamou, M., F. Schulthess, N.A. Bosque-Perez, and A. Thomas-Odjo. 1993. Effect of plant nitrogen and silica on the bionomics of Sesamia calamistis (Lepidoptera: Noctuidae). Bulletin of Entomological Research 83: 405–411.CrossRefGoogle Scholar
  45. Sétamou, M., F. Schulthess, N.A. Bosque-Pérez, and A. Thomas-Odjo. 1995. The effect of stem and ear borers on maize subjected to different nitrogen treatments. Entomological Experimentalis et Applicata 77: 205–210.CrossRefGoogle Scholar
  46. Showler, A.T. 2016. Selected abiotic and biotic environmental stress factors affecting two economically important sugarcane stalk boring pests in the United States. Agronomy 6(10): 2–18.Google Scholar
  47. Singh, R. 2016. Effect of nitrogen and potash on major borer pest incidence in differently maturing varieties of sugarcane. M. Sc. Dissertations. Chaudhary Charan Singh Haryana Agricultural University.Google Scholar
  48. Tubana, B.S., T. Babu, and L.E.A. Datnoff. 2016. Review of silicon in soils and plants and its role in US Agriculture: History and future perspectives. Soil Science 181(9/10): 393–411.Google Scholar
  49. van den Berg, J., and J.B.J. van Rensburg. 1991. Infestation and injury levels of stem borers in relation to yield potential of grain sorghum. South African Journal of Plant and Soil 8(3): 127–131.CrossRefGoogle Scholar
  50. Vilela, M., J. Campos, T. Dos Santos, D. Pereira, and J. Françoso. 2008. Resistência Induzida a Diatraea Saccharalis (Fabricius, 1794) (Lepidoptera: Crambidae) em Cana-De-Açúcar Tratada Com Silício, XXII Congresso Brasileiro De Entomologia. http://www.seb.org.br/eventos/cbe/xxiiicbe/index2.asp?busca=&pagina=23. Accessed 20 May 2016.
  51. Wijaya, K.A. 2016. Effects of Si-fertilizer application through the leaves on yield and sugar content of sugarcane grown in soil containing abundant N. Agriculture and Agricultural Science Procedia 9: 158–162.CrossRefGoogle Scholar

Copyright information

© Society for Sugar Research & Promotion 2018

Authors and Affiliations

  1. 1.University of Montpellier/CIRAD Research Unit AIDAMontpellierFrance
  2. 2.CIRAD Research Unit AIDAMontpellierFrance
  3. 3.Biotechnology LaboratorySugar Company, La Estrella S.A.NatáPanama

Personalised recommendations