Mechanisms of left ventricular dyssynchrony: A multinational SPECT study of patients with bundle branch block

  • Saara Sillanmäki
  • Alessia Gimelli
  • Shahzad Ahmad
  • Saba Samir
  • Tomi Laitinen
  • Prem SomanEmail author



To better understand the mechanisms of left ventricular (LV) mechanical dyssynchrony (LVMD), we explored the relative contributions of QRS duration (QRSd), LV ejection fraction (EF), volumes and scar to LVMD measured by gated single-photon emission tomography in a population of consecutive patients with left bundle branch block (LBBB) and right bundle branch block (RBBB) compared to controls.


Myocardial perfusion imaging studies of 275 LBBB and 83 RBBB patients from three centers were analyzed. LVMD was defined as an abnormal phase bandwidth or phase standard deviation. Hospital and gender-specific normal values were obtained from 172 controls.


The prevalence of LVMD was 85 and 40% in LBBB and RBBB, respectively. Ejection fraction, scar severity, and LBBB morphology independently explained 70% of variance seen in PhaseBW. Ejection fraction had the highest area under the curve (AUC 0.918) in the receiver operating characteristics analysis of LVMD with an optimal cut-off of 47% (sensitivity 73% and specificity 98%). Notably, QRSd was not predictive.


LV mechanical dysfunction plays a greater role than conduction abnormality in the genesis of LVMD, a finding that is intriguing in the context of contemporary literature which suggests that QRSd is the parameter that is most predictive of CRT response.


Physiology of LV/RV function heart failure SPECT dyssynchrony 



Left ventricular mechanical dyssynchrony


Phase analysis bandwidth


Phase analysis standard deviation


Bundle branch block


Left bundle branch block


Right bundle branch block


Ejection fraction


QRS duration



We thank Jonathan Dietz for his technical assistance with the study.


The research was supported by Finnish Foundation for Cardiovascular Research, Finnish Society of Nuclear Medicine, Finnish Society of Clinical Physiology, Finnish Society of Cardiology, Onni and Hilja Tuovinen Foundation, Paavo Nurmi Foundation and Scandinavian Society of Clinical Physiology. The first author (Dr. Saara Sillanmäki) has a research collaboration with AstraZeneca and has had educational support and lecture fee from GE Healthcare. Dr. Prem Soman has had a research funds from Astellas Pharma (not related to this project). Other co-authors have nothing to declare.

Supplementary material

12350_2020_2054_MOESM1_ESM.pptx (555 kb)
Supplementary material 1 (PPTX 554 kb)
12350_2020_2054_MOESM2_ESM.docx (12 kb)
Supplementary material 2 (DOCX 12 kb)


  1. 1.
    Fudim M, Fathallah M, Shaw LK, Liu PR, James O, Samad Z, et al. The prognostic value of diastolic and systolic mechanical left ventricular dyssynchrony among patients with coronary heart disease. JACC Cardiovasc Imaging 2018;12:1215-26.CrossRefGoogle Scholar
  2. 2.
    Zafrir N, Nevzorov R, Bental T, Strasberg B, Gutstein A, Mats I, et al. Prognostic value of left ventricular dyssynchrony by myocardial perfusion-gated SPECT in patients with normal and abnormal left ventricular functions. J Nucl Cardiol 2014;21:532-40.CrossRefGoogle Scholar
  3. 3.
    Tracy CM, Epstein AE, Darbar D, Dimarco JP, Dunbar SB, Estes NA, et al. ACCF/AHA/HRS focused update of the 2008 guidelines for device-based therapy of cardiac rhythm abnormalities: A report of the american college of cardiology foundation/american heart association task force on practice guidelines. Heart Rhythm 2012;2012:1737-53.CrossRefGoogle Scholar
  4. 4.
    Chung ES, Leon AR, Tavazzi L, Sun JP, Nihoyannopoulos P, Merlino J, et al. Results of the predictors of response to CRT (PROSPECT) trial. Circulation 2008;117:2608-16.CrossRefGoogle Scholar
  5. 5.
    Sillanmäki S, Lipponen JA, Tarvainen MP, Laitinen T, Hedman M, Hedman A, et al. Relationships between electrical and mechanical dyssynchrony in patients with left bundle branch block and healthy controls. J Nucl Cardiol 2018;26:1228-39.CrossRefGoogle Scholar
  6. 6.
    Sillanmäki S, Aapro S, Lipponen JA, Tarvainen MP, Laitinen T, Hedman M, et al. Electrical and mechanical dyssynchrony in patients with right bundle branch block. J Nucl Cardiol 2018. Scholar
  7. 7.
    Henneman MM, Chen J, Dibbets-Schneider P, Stokkel MP, Bleeker GB, Ypenburg C, et al. Can LV dyssynchrony as assessed with phase analysis on gated myocardial perfusion SPECT predict response to CRT? J Nucl Med 2007;48:1104-11.CrossRefGoogle Scholar
  8. 8.
    Garrigue S, Reuter S, Labeque JN, Jais P, Hocini M, Shah DC, et al. Usefulness of biventricular pacing in patients with congestive heart failure and right bundle branch block. Am J Cardiol 2001;88:1436-41.CrossRefGoogle Scholar
  9. 9.
    Hara H, Oyenuga OA, Tanaka H, Adelstein EC, Onishi T, McNamara DM, et al. The relationship of QRS morphology and mechanical dyssynchrony to long-term outcome following cardiac resynchronization therapy. Eur Heart J 2012;33:2680-91.CrossRefGoogle Scholar
  10. 10.
    Azizian N, Rastgou F, Ghaedian T, Golabchi A, Bahadorian B, Khanlarzadeh V, et al. LV dyssynchrony assessed with phase analysis on gated myocardial perfusion SPECT can predict response to CRT in patients with end-stage heart failure. Res Cardiovasc Med 2014;3:e20720.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Boogers MM, Chen J, Bax JJ. Role of nuclear imaging in cardiac resynchronization therapy. Expert Rev Cardiovasc Ther 2009;7:65-72.CrossRefGoogle Scholar
  12. 12.
    Maass AH, Vernooy K, Wijers SC, van’t Sant J, Cramer MJ, Meine M, et al. Refining success of cardiac resynchronization therapy using a simple score predicting the amount of reverse ventricular remodelling: Results from the markers and response to CRT (MARC) study. Europace 2018;20:e1-10.CrossRefGoogle Scholar
  13. 13.
    Marsan NA, Bleeker GB, Ypenburg C, Ghio S, van de Veire NR, Holman ER, et al. Real-time three-dimensional echocardiography permits quantification of left ventricular mechanical dyssynchrony and predicts acute response to cardiac resynchronization therapy. J Cardiovasc Electrophysiol 2008;19:392-9.CrossRefGoogle Scholar
  14. 14.
    Chen J, Garcia EV, Bax JJ, Iskandrian AE, Borges-Neto S, Soman P. SPECT myocardial perfusion imaging for the assessment of left ventricular mechanical dyssynchrony. J Nucl Cardiol 2011;18:685-94.CrossRefGoogle Scholar
  15. 15.
    Ficaro EP, Lee BC, Kritzman JN, Corbett JR. Corridor4DM: The michigan method for quantitative nuclear cardiology. J Nucl Cardiol 2007;14:455-65.CrossRefGoogle Scholar
  16. 16.
    Peix A, Karell J, Rodriguez L, Cabrera LO, Padron K, Carrillo R, et al. Gated SPECT myocardial perfusion imaging, intraventricular synchronism, and cardiac events in heart failure. Clin Nucl Med 2014;39:498-504.CrossRefGoogle Scholar
  17. 17.
    Surawicz B, Childers R, Deal BJ, Gettes LS, Bailey JJ, Gorgels A, et al. AHA/ACCF/HRS recommendations for the standardization and interpretation of the electrocardiogram: Part III: Intraventricular conduction disturbances: A scientific statement from the american heart association electrocardiography and arrhythmias committee, council on clinical cardiology; the american college of cardiology foundation; and the heart rhythm society endorsed by the international society for computerized electrocardiology. J Am Coll Cardiol 2009;53:976-81.CrossRefGoogle Scholar
  18. 18.
    Mukherjee A, Patel CD, Naik N, Sharma G, Roy A. Quantitative assessment of cardiac mechanical dyssynchrony and prediction of response to cardiac resynchronization therapy in patients with nonischaemic dilated cardiomyopathy using gated myocardial perfusion SPECT. Nucl Med Commun 2015;36:494-501.PubMedGoogle Scholar
  19. 19.
    Boogers MM, Van Kriekinge SD, Henneman MM, Ypenburg C, Van Bommel RJ, Boersma E, et al. Quantitative gated SPECT-derived phase analysis on gated myocardial perfusion SPECT detects left ventricular dyssynchrony and predicts response to cardiac resynchronization therapy. J Nucl Med 2009;50:718-25.CrossRefGoogle Scholar
  20. 20.
    Sillanmäki S, Koivumäki T, Laitinen TM, Hakulinen M, Hedman M, Laitinen T. BMI influence on the reproducibility of ECG-gated myocardial perfusion imaging phase analysis in comparison with novel echocardiographic dyssynchrony estimation methods. Nucl Med Commun 2016;37:767-74.CrossRefGoogle Scholar
  21. 21.
    Tanaka H, Hara H, Adelstein EC, Schwartzman D, Saba S, Gorcsan J. Comparative mechanical activation mapping of RV pacing to LBBB by 2D and 3D speckle tracking and association with response to resynchronization therapy. JACC Cardiovasc Imaging 2010;3:461-71.CrossRefGoogle Scholar
  22. 22.
    Linde C, Abraham WT, Gold MR, Sutton M, Ghio S, Daubert C, et al. Randomized trial of cardiac resynchronization in mildly symptomatic heart failure patients and in asymptomatic patients with left ventricular dysfunction and previous heart failure symptoms. J Am Coll Cardiol 2008;52:1834-43.CrossRefGoogle Scholar
  23. 23.
    Bleeker GB, Schalij MJ, Molhoek SG, Verwey HF, Holman ER, Boersma E, et al. Relationship between QRS duration and left ventricular dyssynchrony in patients with end-stage heart failure. J Cardiovasc Electrophysiol 2004;15:544-9.CrossRefGoogle Scholar
  24. 24.
    Ruschitzka F, Abraham WT, Singh JP, Bax JJ, Borer JS, Brugada J, et al. Cardiac-resynchronization therapy in heart failure with a narrow QRS complex. N Engl J Med 2013;369:1395-405.CrossRefGoogle Scholar
  25. 25.
    Nakajima K, Okuda K, Matsuo S, Kiso K, Kinuya S, Garcia EV. Comparison of phase dyssynchrony analysis using gated myocardial perfusion imaging with four software programs: Based on the japanese society of nuclear medicine working group normal database. J Nucl Cardiol 2017;24:611-21.CrossRefGoogle Scholar
  26. 26.
    Oyenuga O, Hara H, Tanaka H, Kim HN, Adelstein EC, Saba S, et al. Usefulness of echocardiographic dyssynchrony in patients with borderline QRS duration to assist with selection for cardiac resynchronization therapy. JACC Cardiovasc Imaging 2010;3:132-40.CrossRefGoogle Scholar
  27. 27.
    Forrester JS, Wyatt HL, Da Luz PL, Tyberg JV, Diamond GA, Swan HJ. Functional significance of regional ischemic contraction abnormalities. Circulation 1976;54:64-70.CrossRefGoogle Scholar
  28. 28.
    Ypenburg C, Roes SD, Bleeker GB, Kaandorp TA, de Roos A, Schalij MJ, et al. Effect of total scar burden on contrast-enhanced magnetic resonance imaging on response to cardiac resynchronization therapy. Am J Cardiol 2007;99:657-60.CrossRefGoogle Scholar
  29. 29.
    Abraham TP, Olsen NT. QRS width and mechanical dyssynchrony for selection of patients for cardiac resynchronization therapy: One can’t do without the other. JACC Cardiovasc Imaging 2010;3:141-3.CrossRefGoogle Scholar

Copyright information

© American Society of Nuclear Cardiology 2020

Authors and Affiliations

  • Saara Sillanmäki
    • 1
    • 2
  • Alessia Gimelli
    • 3
  • Shahzad Ahmad
    • 4
  • Saba Samir
    • 4
  • Tomi Laitinen
    • 1
    • 2
  • Prem Soman
    • 4
    • 5
    Email author
  1. 1.Institute of Clinical MedicineUniversity of Eastern FinlandJoensuuFinland
  2. 2.Department of Nuclear Medicine and Clinical PhysiologyKuopio University HospitalKuopioFinland
  3. 3.Fondazione Toscana/CNR Gabriele MonasterioPisaItaly
  4. 4.Division of Cardiology and The Heart and Vascular InstituteUniversity of Pittsburgh Medical CenterPittsburghUSA
  5. 5.University of Pittsburgh Medical CenterPittsburghUSA

Personalised recommendations