Reproducibility and Repeatability of Assessment of Myocardial Light Chain Amyloidosis Burden Using 18F-Florbetapir PET/CT

  • Ariana NodoushaniEmail author
  • Mohammed Samir El-Sady
  • Mi-Ae Park
  • Gloria L. Castilloveitia
  • Rodney H. Falk
  • Marcelo F. Di Carli
  • Marie Foley Kijewski
  • Sharmila Dorbala
Original Article



18F-florbetapir PET is emerging as an excellent quantitative tool to quantify cardiac light chain (AL) amyloidosis burden. The primary aim of this study was to determine interobserver reproducibility and intraobserver repeatability, defined per the recommendations of the Quantitative Imaging Biomarker Alliance technical performance group, of PET 18F-florbetapir retention index (RI) in patients with cardiac AL amyloidosis.


The study cohort comprised 37 subjects with systemic AL amyloidosis enrolled in the prospective study: Molecular Imaging of Primary Amyloid Cardiomyopathy (clinical NCT: 02641145). Using 10 mCi of 18F-florbetapir, a 60-minute dynamic cardiac scan was acquired. Global and segmental left ventricular estimates of retention index (RI) of 18F-florbetapir were calculated (Carimas 2.9 software, Turku, Finland). RI was analyzed twice, at least 24 hours apart, by two independent observers. Intraobserver repeatability and interobserver reproducibility were evaluated using Bland–Altman plots and scatter plots with fitted linear regression curves.


All reproducibility (interobserver, r = 0.98) and repeatability (intraobserver, R=0.99 for each observer) measures of 18F-florbetapir RI are excellent. On the Bland–Altman plots, the agreement limits for global 18F-florbetapir RI were high and ranged for reproducibility (interobserver) from − 9.3 to + 9.4% (Fig. 1), and for repeatability (observer 1 from − 10.8 to + 10.7% and from − 9.2 to + 11.4%, for observer 2).


The present study showed excellent interobserver reproducibility and intraobserver repeatability of 18F-florbetapir PET retention index in patients with cardiac AL amyloidosis.


PET amyloid heart disease image analysis heart failure 



Light chain


Light chain amyloidosis with cardiomyopathy


Positron imaging tomography


Retention index


Left ventricle


N-terminal pro b-type natriuretic peptide


Cardiac troponin T


Estimated glomerular filtration rate


Molecular Imaging of Primary Amyloid Cardiomyopathy



RHF has received consulting fees from Ionis Pharmaceuticals and Alnylam Pharmaceuticals and research funding from GlaxoSmithKline. SD serves as a consultant for Proclara, Pfizer, AAA, and GEHC and has received research funds from Pfizer. The other authors do not have any conflicts to disclose.

Supplementary material

12350_2019_1961_MOESM1_ESM.docx (831 kb)
Electronic supplementary material 1 (DOCX 831 kb)
12350_2019_1961_MOESM2_ESM.pptx (430 kb)
Electronic supplementary material 2 (PPTX 430 kb)
12350_2019_1961_MOESM3_ESM.m4a (6.2 mb)
Electronic supplementary material 3 (M4A 6377 kb)


  1. 1.
    Falk RH, Alexander KM, Liao R, Dorbala S. AL (light-chain) cardiac amyloidosis: A review of diagnosis and therapy. J Am Coll Cardiol. 2016;68:1323–41.CrossRefGoogle Scholar
  2. 2.
    Ruberg FL, Berk JL. Transthyretin (TTR) cardiac amyloidosis. Circulation. 2012;126:1286–300.CrossRefGoogle Scholar
  3. 3.
    Richards DB, Cookson LM, Berges AC, Barton SV, Lane T, Ritter JM, et al. Therapeutic clearance of amyloid by antibodies to serum amyloid P component. N Engl J Med. 2015;373:1106–14.CrossRefGoogle Scholar
  4. 4.
    Gertz MA, Landau H, Comenzo RL, Seldin D, Weiss B, Zonder J, et al. First-in-human phase I/II study of NEOD001 in patients with light chain amyloidosis and persistent organ dysfunction. J Clin Oncol. 2016;34:1097–103.CrossRefGoogle Scholar
  5. 5.
    Dorbala S, Kijewski MF, Park MA. Quantitative molecular imaging of cardiac amyloidosis: The journey has begun. J Nucl Cardiol. 2016;23:751–3.CrossRefGoogle Scholar
  6. 6.
    Park MA, Padera RF, Belanger A, Dubey S, Hwang DH, Veeranna V, et al. 18F-florbetapir binds specifically to myocardial light chain and transthyretin amyloid deposits: Autoradiography study. Circ Cardiovasc Imaging. 2015;8:e002954.CrossRefGoogle Scholar
  7. 7.
    Dorbala S. Imaging cardiac amyloidosis: An opportunity for nuclear cardiology. J Nucl Cardiol. 2014;21:1043–4.CrossRefGoogle Scholar
  8. 8.
    Raunig DL, Mcshane LM, Pennello G, Gatsonis C, Carson PL, Voyvodic JT, et al. Quantitative imaging biomarkers: A review of statistical methods for technical performance assessment. Stat Methods Med Res. 2014;24:27–67.CrossRefGoogle Scholar
  9. 9.
    Dorbala S, Vangala D, Semer J, Strader C, Bruyere JR Jr, Di Carli MF, et al. Imaging cardiac amyloidosis: A pilot study using (18)F-florbetapir positron emission tomography. Eur J Nucl Med Mol Imaging. 2014;41:1652–62.CrossRefGoogle Scholar
  10. 10.
    Nesterov SV, Turta O, Han C, Maki M, Lisinen I, Tuunanen H, et al. C-11 acetate has excellent reproducibility for quantification of myocardial oxidative metabolism. Eur Heart J Cardiovasc Imaging. 2015;16:500–6.CrossRefGoogle Scholar
  11. 11.
    Kero T, Lindsjo L, Sorensen J, Lubberink M. Accurate analysis and visualization of cardiac (11)C-PIB uptake in amyloidosis with semiautomatic software. J Nucl Cardiol. 2016;23:741–50.CrossRefGoogle Scholar

Copyright information

© American Society of Nuclear Cardiology 2019

Authors and Affiliations

  • Ariana Nodoushani
    • 1
    Email author
  • Mohammed Samir El-Sady
    • 1
  • Mi-Ae Park
    • 1
  • Gloria L. Castilloveitia
    • 2
  • Rodney H. Falk
    • 3
  • Marcelo F. Di Carli
    • 1
  • Marie Foley Kijewski
    • 1
  • Sharmila Dorbala
    • 1
    • 3
  1. 1.Division of Nuclear Medicine and Molecular Imaging, Department of RadiologyBrigham and Women’s Hospital and Harvard Medical SchoolBostonUSA
  2. 2.Ponce Health Sciences UniversityPonceUSA
  3. 3.Cardiac Amyloidosis Program, Division of Cardiology, Department of Medicine, Heart & Vascular CenterBrigham and Women’s Hospital and Harvard Medical SchoolBostonUSA

Personalised recommendations