Advertisement

Myocardial glucose and fatty acid metabolism is altered and associated with lower cardiac function in young adults with Barth syndrome

  • William Todd CadeEmail author
  • Richard Laforest
  • Kathryn L. Bohnert
  • Dominic N. Reeds
  • Adam J. Bittel
  • Lisa de las Fuentes
  • Adil Bashir
  • Pamela K. Woodard
  • Christina A. Pacak
  • Barry J. Byrne
  • Robert J. Gropler
  • Linda R. Peterson
Original Article

Abstract

Background

Barth syndrome (BTHS) is a rare X-linked condition resulting in cardiomyopathy, however; the effects of BTHS on myocardial substrate metabolism and its relationships with cardiac high-energy phosphate metabolism and left ventricular (LV) function are unknown. We sought to characterize myocardial glucose, fatty acid (FA), and leucine metabolism in BTHS and unaffected controls and examine their relationships with cardiac high-energy phosphate metabolism and LV function.

Methods/Results

Young adults with BTHS (n = 14) and unaffected controls (n = 11, Control, total n = 25) underwent bolus injections of 15O-water and 1-11C-glucose, palmitate, and leucine and concurrent positron emission tomography imaging. LV function and cardiac high-energy phosphate metabolism were examined via echocardiography and 31P magnetic resonance spectroscopy, respectively. Myocardial glucose extraction fraction (21 ± 14% vs 10 ± 8%, P = .03) and glucose utilization (828.0 ± 470.0 vs 393.2 ± 361.0 μmol·g−1·min−1, P = .02) were significantly higher in BTHS vs Control. Myocardial FA extraction fraction (31 ± 7% vs 41 ± 6%, P < .002) and uptake (0.25 ± 0.04 vs 0.29 ± 0.03 mL·g−1·min−1, P < .002) were significantly lower in BTHS vs Control. Altered myocardial metabolism was associated with lower cardiac function in BTHS.

Conclusions

Myocardial substrate metabolism is altered and may contribute to LV dysfunction in BTHS.

Clinical Trials #: NCT01625663.

Keywords

Metabolic PET metabolism imaging agents cardiomyopathy 

Abbreviations

BTHS

Barth syndrome

WUSTL

Washington University in St. Louis

LV

Left ventricular

2D

Two-dimensional

PET

Positron emission tomography

PCr/ATP

Phosphocreatine to adenosine triphosphate ratio

Notes

Acknowledgments

We thank the nursing staff at the WUSTL Institute for Clinical and Translational Sciences Clinical Research Unit for their hard work and altruism. We especially thank Kitty Krupp, RN, for her work with study radioisotope tracer administration and blood draws and the staff at the WUSTL CCIR for acquisition of the PET scans. Lastly, we thank the participants and their families for their dedication and effort to travel to St. Louis and participate in this study.

Disclosures

None.

Supplementary material

12350_2019_1933_MOESM1_ESM.pdf (81 kb)
Supplementary material 1 (PDF 82 kb)
12350_2019_1933_MOESM2_ESM.pdf (26 kb)
Supplementary material 2 (PDF 27 kb)
12350_2019_1933_MOESM3_ESM.mp3 (2.4 mb)
Supplementary material 3 (MP3 2466 kb)

References

  1. 1.
    Barth Syndrome Foundation. About Barth syndrome-frequently asked questions. Barth Syndrome Foundation; 2019. https://www.barthsyndrome.org/file_download/inline/8bd9d37d-6449-4687-99b3-7d78202475be. Accessed 24 July 2019.
  2. 2.
    Clarke SL, Bowron A, Gonzalez IL, et al. Barth syndrome. Orphanet J Rare Dis 2013;8:23.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Barth PG, Scholte HR, Berden JA, et al. An X-linked mitochondrial disease affecting cardiac muscle, skeletal muscle and neutrophil leucocytes. J Neurol Sci 1983;62:327-55.PubMedCrossRefGoogle Scholar
  4. 4.
    Bione S, D’Adamo P, Maestrini E, Gedeon AK, Bolhuis PA, Toniolo D. A novel X-linked gene, G4.5. is responsible for Barth syndrome. Nat Genet 1996;12:385-9.PubMedCrossRefGoogle Scholar
  5. 5.
    Wang G, McCain ML, Yang L, et al. Modeling the mitochondrial cardiomyopathy of Barth syndrome with induced pluripotent stem cell and heart-on-chip technologies. Nat Med 2014;20:616-23.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Xu Y, Phoon CK, Berno B, et al. Loss of protein association causes cardiolipin degradation in Barth syndrome. Nat Chem Biol 2016;12:641-7.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Zhang M, Mileykovskaya E, Dowhan W. Gluing the respiratory chain together. Cardiolipin is required for supercomplex formation in the inner mitochondrial membrane. J Biol Chem 2002;277:43553-6.PubMedCrossRefGoogle Scholar
  8. 8.
    Spencer CT, Bryant RM, Day J, et al. Cardiac and clinical phenotype in Barth syndrome. Pediatrics 2006;118:e337-46.PubMedCrossRefGoogle Scholar
  9. 9.
    Kang SL, Forsey J, Dudley D, Steward CG, Tsai-Goodman B. Clinical characteristics and outcomes of cardiomyopathy in Barth syndrome: The UK experience. Pediatr Cardiol 2016;37:167-76.PubMedCrossRefGoogle Scholar
  10. 10.
    Bashir A, Bohnert KL, Reeds DN, et al. Impaired cardiac and skeletal muscle bioenergetics in children, adolescents, and young adults with Barth syndrome. Physiol Rep 2017.  https://doi.org/10.14814/phy2.13130.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Spencer CT, Byrne BJ, Bryant RM, et al. Impaired cardiac reserve and severely diminished skeletal muscle O(2) utilization mediate exercise intolerance in Barth syndrome. Am J Physiol Heart Circ Physiol 2011;301:H2122-9.PubMedCrossRefGoogle Scholar
  12. 12.
    Cade WT, Bohnert KL, Peterson LR, et al. Blunted fat oxidation upon submaximal exercise is partially compensated by enhanced glucose metabolism in children, adolescents and young adults with Barth syndrome. J Inherit Metab Dis 2019;42:480-93.PubMedGoogle Scholar
  13. 13.
    Davila-Roman VG, Vedala G, Herrero P, et al. Altered myocardial fatty acid and glucose metabolism in idiopathic dilated cardiomyopathy. J Am Coll Cardiol 2002;40:271-7.PubMedCrossRefGoogle Scholar
  14. 14.
    Tuunanen H, Engblom E, Naum A, et al. Decreased myocardial free fatty acid uptake in patients with idiopathic dilated cardiomyopathy: Evidence of relationship with insulin resistance and left ventricular dysfunction. J Card Fail 2006;12:644-52.PubMedCrossRefGoogle Scholar
  15. 15.
    Peterson MB, Mead RJ, Welty JD. Free amino acids in congestive heart failure. J Mol Cell Cardiol 1973;5:139-47.PubMedCrossRefGoogle Scholar
  16. 16.
    Lai L, Leone TC, Keller MP, et al. Energy metabolic reprogramming in the hypertrophied and early stage failing heart: A multisystems approach. Circ Heart Fail 2014;7:1022-31.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Sansbury BE, DeMartino AM, Xie Z, et al. Metabolomic analysis of pressure-overloaded and infarcted mouse hearts. Circ Heart Fail 2014;7:634-42.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Cade WT, Spencer CT, Reeds DN, et al. Substrate metabolism during basal and hyperinsulinemic conditions in adolescents and young-adults with Barth syndrome. J Inherit Metab Dis 2013;36:91-101.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Lang RM, Bierig M, Devereux RB, et al. Recommendations for chamber quantification: A report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr 2005;18:1440-63.PubMedCrossRefGoogle Scholar
  20. 20.
    Wallimann T, Wyss M, Brdiczka D, Nicolay K, Eppenberger HM. Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: The ‘phosphocreatine circuit’ for cellular energy homeostasis. Biochem J 1992;281:21-40.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Naressi A, Couturier C, Devos JM, et al. Java-based graphical user interface for the MRUI quantitation package. MAGMA 2001;12:141-52.PubMedCrossRefGoogle Scholar
  22. 22.
    Vanhamme L, van den Boogaart A, Van Huffel S. Improved method for accurate and efficient quantification of MRS data with use of prior knowledge. J Magn Reson 1997;129:35-43.PubMedCrossRefGoogle Scholar
  23. 23.
    El-Sharkawy AM, Schar M, Ouwerkerk R, Weiss RG, Bottomley PA. Quantitative cardiac 31P spectroscopy at 3 Tesla using adiabatic pulses. Magn Reson Med 2009;61:785-95.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Bashir A, Gropler R. Reproducibility of creatine kinase reaction kinetics in human heart: A (31)P time-dependent saturation transfer spectroscopy study. NMR Biomed 2014;27:663-71.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Young ME, Razeghi P, Cedars AM, Guthrie PH, Taegtmeyer H. Intrinsic diurnal variations in cardiac metabolism and contractile function. Circ Res 2001;89:1199-208.PubMedCrossRefGoogle Scholar
  26. 26.
    Bergmann SR, Herrero P, Markham J, Weinheimer CJ, Walsh MN. Noninvasive quantitation of myocardial blood flow in human subjects with oxygen-15-labeled water and positron emission tomography. J Am Coll Cardiol 1989;14:639-52.PubMedCrossRefGoogle Scholar
  27. 27.
    Herrero P, Weinheimer CJ, Dence C, Oellerich WF, Gropler RJ. Quantification of myocardial glucose utilization by PET and 1-carbon-11-glucose. J Nucl Cardiol 2002;9:5-14.PubMedCrossRefGoogle Scholar
  28. 28.
    Bergmann SR, Weinheimer CJ, Markham J, Herrero P. Quantitation of myocardial fatty acid metabolism using PET. J Nucl Med 1996;37:1723-30.PubMedGoogle Scholar
  29. 29.
    Tuunanen H, Engblom E, Naum A, et al. Free fatty acid depletion acutely decreases cardiac work and efficiency in cardiomyopathic heart failure. Circulation 2006;114:2130-7.PubMedCrossRefGoogle Scholar
  30. 30.
    Kolwicz SC Jr, Olson DP, Marney LC, Garcia-Menendez L, Synovec RE, Tian R. Cardiac-specific deletion of acetyl CoA carboxylase 2 prevents metabolic remodeling during pressure-overload hypertrophy. Circ Res 2012;111:728-38.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    He L, Kim T, Long Q, et al. Carnitine palmitoyltransferase-1b deficiency aggravates pressure overload-induced cardiac hypertrophy caused by lipotoxicity. Circulation 2012;126:1705-16.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Jaswal JS, Keung W, Wang W, Ussher JR, Lopaschuk GD. Targeting fatty acid and carbohydrate oxidation—A novel therapeutic intervention in the ischemic and failing heart. Biochim Biophys Acta 2011;1813:1333-50.PubMedCrossRefGoogle Scholar
  33. 33.
    Fiolet JW, Baartscheer A. Cellular calcium homeostasis during ischemia; a thermodynamic approach. Cardiovasc Res 2000;45:100-6.PubMedCrossRefGoogle Scholar
  34. 34.
    Suzuki-Hatano S, Saha M, Soustek MS, et al. AAV9-TAZ gene replacement ameliorates cardiac TMT proteomic profiles in a mouse model of Barth syndrome. Mol Ther Methods Clin Dev 2019;13:167-79.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Schweitzer GG, Finck BN, Cade WT. Increased anaerobic metabolism during exercise in Barth syndrome may result from augmented liver glycogenolysis. In: International scientific, medical, and family conference. Clearwater Beach, FL: Barth Syndrome Foundation; 2018 (Abstract).Google Scholar
  36. 36.
    Kelly DP, Mendelsohn NJ, Sobel BE, Bergmann SR. Detection and assessment by positron emission tomography of a genetically determined defect in myocardial fatty acid utilization (long-chain acyl-CoA dehydrogenase deficiency). Am J Cardiol 1993;71:738-44.PubMedCrossRefGoogle Scholar
  37. 37.
    Bergmann SR, Herrero P, Sciacca R, et al. Characterization of altered myocardial fatty acid metabolism in patients with inherited cardiomyopathy. J Inherit Metab Dis 2001;24:657-74.PubMedCrossRefGoogle Scholar
  38. 38.
    Murray AJ, Cole MA, Lygate CA, et al. Increased mitochondrial uncoupling proteins, respiratory uncoupling and decreased efficiency in the chronically infarcted rat heart. J Mol Cell Cardiol 2008;44:694-700.PubMedCrossRefGoogle Scholar
  39. 39.
    Sluse FE. Uncoupling proteins: Molecular, functional, regulatory, physiological and pathological aspects. Adv Exp Med Biol 2012;942:137-56.PubMedCrossRefGoogle Scholar
  40. 40.
    Knottnerus SJG, Bleeker JC, Wust RCI, et al. Disorders of mitochondrial long-chain fatty acid oxidation and the carnitine shuttle. Rev Endocr Metab Disord 2018;19:93-106.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Cleroux J, Van Nguyen P, Taylor AW, Leenen FH. Effects of beta 1- vs. beta 1 + beta 2-blockade on exercise endurance and muscle metabolism in humans. J Appl Physiol (1985) 1989;66:548-54.CrossRefGoogle Scholar
  42. 42.
    Fonseca VA. Effects of beta-blockers on glucose and lipid metabolism. Curr Med Res Opin 2010;26:615-29.PubMedCrossRefGoogle Scholar
  43. 43.
    Ichihara K, Neely JR, Siehl DL, Morgan HE. Utilization of leucine by working rat heart. Am J Physiol 1980;239:E430-6.PubMedGoogle Scholar
  44. 44.
    Vernon HJ, Sandlers Y, McClellan R, Kelley RI. Clinical laboratory studies in Barth syndrome. Mol Genet Metab 2014;112:143-7.PubMedCrossRefGoogle Scholar

Copyright information

© American Society of Nuclear Cardiology 2019

Authors and Affiliations

  • William Todd Cade
    • 1
    • 2
    Email author
  • Richard Laforest
    • 3
  • Kathryn L. Bohnert
    • 1
  • Dominic N. Reeds
    • 2
  • Adam J. Bittel
    • 1
  • Lisa de las Fuentes
    • 2
  • Adil Bashir
    • 3
    • 4
  • Pamela K. Woodard
    • 3
  • Christina A. Pacak
    • 5
  • Barry J. Byrne
    • 5
  • Robert J. Gropler
    • 3
  • Linda R. Peterson
    • 2
    • 3
  1. 1.Program in Physical TherapyWashington University School of MedicineSt. LouisUSA
  2. 2.Department of MedicineWashington University School of MedicineSt. LouisUSA
  3. 3.Department of RadiologyWashington University School of MedicineSt. LouisUSA
  4. 4.Department of Electrical and Computer EngineeringAuburn UniversityAuburnUSA
  5. 5.Department of PediatricsUniversity of FloridaGainesvilleUSA

Personalised recommendations