Advertisement

18F-sodium fluoride PET/MRI myocardial imaging in patients with suspected cardiac amyloidosis

  • Mukedaisi Abulizi
  • Islem Sifaoui
  • Mijiti Wuliya-Gariepy
  • Mounira Kharoubi
  • Jean-Marc Israël
  • Berivan Emsen
  • Diane Bodez
  • Aurélien Monnet
  • David Didierlaurent
  • Vania Tacher
  • Alain Luciani
  • Thibaud Damy
  • Jean-François Deux
  • Emmanuel IttiEmail author
Original Article

Abstract

Background

We evaluated the diagnostic performance of 18F-NaF PET/MRI in patients with suspected cardiac amyloidosis (CA).

Methods

Twenty-seven consecutive patients underwent myocardial PET 1 hour after injection of 4 MBq/kg 18F-NaF with simultaneous MRI including cine-MRI, T1 and T2 mapping, first-pass and late gadolinium enhancement (LGE). 18F-NaF uptake was measured visually and semi-quantitatively by calculating myocardium-to-blood pool (M/B) ratios. CA was confirmed histologically.

Results

Transthyretin (TTR)-CA was diagnosed in 16 patients, light-chain (AL)-CA in 7, and no-CA in 4. Visual interpretation of 18F-NaF images revealed a relative increase in myocardial uptake in only 3 patients, all with TTR CA, and a relative decrease in 13, including 7 AL CA, 3 no-CA, and 3 TTR CA. M/B ratios were significantly higher in TTR CA (1.00 ± 0.12) than in AL CA (0.81 ± 0.06, P = 0.001) or in no-CA (0.73 ± 0.16, P = 0.006). The optimal M/B cut-off to distinguish TTR CA from AL CA was ≥ 0.90 (Fischer, P = 0.0005). By comparison, classification of patients using 99mTc-HMDP heart-to-mediastinum ratios with the previously published cut-off ≥ 1.21 reached higher significance (P < 0.0001). Among MRI parameters, myocardial T1, LGE score, and extracellular volume were higher in CA than in no-CA patients, 1409 ± 76 vs 1278 ± 35 ms (P = 0.004), 10.35 ± 5.30 vs 3.50 ± 3.42 (P = 0.03), and 46 ± 10 vs 33 ± 8 % (P = 0.01), respectively.

Conclusion

18F-NaF PET/MRI shows good diagnostic performance when semi-quantification is used. However, contrast is low and visual interpretation may be challenging in routine. PET/MRI could constitute a one-stop-shop evaluation of amyloid load and cardiac function in patients needing rapid work-up.

Keywords

Cardiac amyloidosis 18F-sodium fluoride myocardial uptake PET/MRI 

Abbreviations

18F-NaF

18F-sodium fluoride

PET/MRI

Positron emission tomography/magnetic resonance imaging

TTR

Transthyretin

AL

Light-chain

CA

Cardiac amyloidosis

99mTc-HMDP

99mTc-hydroxymethylene diphosphonate

SUV

Standardized uptake value

LGE

Late gadolinium enhancement

NTproBNP

N-terminal pro-brain natriuretic peptide

ROC

Receiver operating characteristics

Notes

Disclosures

All authors have approved the manuscript, and agree with its submission to the Journal of Nuclear Cardiology. There is no financial or other relation that could lead to a conflict of interest.

Ethical approval

The procedure followed was in accordance with the ethical standards guidelines of the responsible committee on human experimentation.

Supplementary material

12350_2019_1885_MOESM1_ESM.PPTX
Electronic supplementary material 1 (PPTX 6601 kb)

References

  1. 1.
    Merlini G, Bellotti V. Molecular mechanisms of amyloidosis. N Engl J Med 2003;349:583-96.CrossRefGoogle Scholar
  2. 2.
    Mohty D, Damy T, Cosnay P, Echahidi N, Casset-Senon D, Virot P, et al. Cardiac amyloidosis: updates in diagnosis and management. Arch Cardiovasc Dis 2013;106:528-40.CrossRefGoogle Scholar
  3. 3.
    Holzmann M, Nicko A, Kuhl U, Noutsias M, Poller W, Hoffmann W, et al. Complication rate of right ventricular endomyocardial biopsy via the femoral approach: A retrospective and prospective study analyzing 3048 diagnostic procedures over an 11-year period. Circulation 2008;118:1722-8.CrossRefGoogle Scholar
  4. 4.
    Gillmore JD, Maurer MS, Falk RH, Merlini G, Damy T, Dispenzieri A, et al. Nonbiopsy diagnosis of cardiac transthyretin amyloidosis. Circulation 2016;133:2404-12.CrossRefGoogle Scholar
  5. 5.
    Deux JF, Damy T, Rahmouni A, Mayer J, Plante-Bordeneuve V. Noninvasive detection of cardiac involvement in patients with hereditary transthyretin associated amyloidosis using cardiac magnetic resonance imaging: A prospective study. Amyloid 2014;21:246-55.CrossRefGoogle Scholar
  6. 6.
    Galat A, Rosso J, Guellich A, Van Der Gucht A, Rappeneau S, Bodez D, et al. Usefulness of (99m)Tc-HMDP scintigraphy for the etiologic diagnosis and prognosis of cardiac amyloidosis. Amyloid 2015;22:210-20.CrossRefGoogle Scholar
  7. 7.
    Van Der Gucht A, Galat A, Rosso J, Guellich A, Garot J, Bodez D, et al. [18F]-NaF PET/CT imaging in cardiac amyloidosis. J Nucl Cardiol 2016;23:846-9.CrossRefGoogle Scholar
  8. 8.
    Morgenstern R, Yeh R, Castano A, Maurer MS, Bokhari S. (18)Fluorine sodium fluoride positron emission tomography, a potential biomarker of transthyretin cardiac amyloidosis. J Nucl Cardiol 2017;25:1559-67.CrossRefGoogle Scholar
  9. 9.
    Trivieri MG, Dweck MR, Abgral R, Robson PM, Karakatsanis NA, Lala A, et al. (18)F-sodium fluoride PET/MR for the assessment of cardiac amyloidosis. J Am Coll Cardiol 2016;68:2712-4.CrossRefGoogle Scholar
  10. 10.
    Ridouani F, Damy T, Tacher V, Derbel H, Legou F, Sifaoui I, et al. Myocardial native T2 measurement to differentiate light-chain and transthyretin cardiac amyloidosis and assess prognosis. J Cardiovasc Magn Reson 2018;20:58.CrossRefGoogle Scholar
  11. 11.
    Dungu JN, Valencia O, Pinney JH, Gibbs SD, Rowczenio D, Gilbertson JA, et al. CMR-based differentiation of AL and ATTR cardiac amyloidosis. JACC Cardiovasc Imaging 2014;7:133-42.CrossRefGoogle Scholar
  12. 12.
    Galat A, Van der Gucht A, Guellich A, Bodez D, Cottereau AS, Guendouz S, et al. Early phase 99Tc-HMDP scintigraphy for the diagnosis and typing of cardiac amyloidosis. JACC Cardiovasc Imaging 2017;10:601-3.CrossRefGoogle Scholar
  13. 13.
    Wan K, Sun J, Han Y, Liu H, Yang D, Li W, et al. Increased prognostic value of query amyloid late enhancement score in light-chain cardiac amyloidosis. Circ J 2018;82:739-46.CrossRefGoogle Scholar
  14. 14.
    Messroghli DR, Moon JC, Ferreira VM, Grosse-Wortmann L, He T, Kellman P, et al. Clinical recommendations for cardiovascular magnetic resonance mapping of T1, T2, T2* and extracellular volume: A consensus statement by the Society for Cardiovascular Magnetic Resonance (SCMR) endorsed by the European Association for Cardiovascular Imaging (EACVI). J Cardiovasc Magn Reson 2017;19:75.CrossRefGoogle Scholar
  15. 15.
    Gagliardi C, Tabacchi E, Bonfiglioli R, Diodato S, Nanni C, Guidalotti P, et al. Does the etiology of cardiac amyloidosis determine the myocardial uptake of [18F]-NaF PET/CT? J Nucl Cardiol 2016;24:746-9.CrossRefGoogle Scholar
  16. 16.
    Maceira AM, Prasad SK, Hawkins PN, Roughton M, Pennell DJ. Cardiovascular magnetic resonance and prognosis in cardiac amyloidosis. J Cardiovasc Magn Reson 2008;10:54.CrossRefGoogle Scholar
  17. 17.
    Karamitsos TD, Piechnik SK, Banypersad SM, Fontana M, Ntusi NB, Ferreira VM, et al. Noncontrast T1 mapping for the diagnosis of cardiac amyloidosis. JACC Cardiovasc Imaging 2013;6:488-97.CrossRefGoogle Scholar
  18. 18.
    Fontana M, Chung R, Hawkins PN, Moon JC. Cardiovascular magnetic resonance for amyloidosis. Heart Fail Rev 2015;20:133-44.CrossRefGoogle Scholar
  19. 19.
    Park MA, Padera RF, Belanger A, Dubey S, Hwang DH, Veeranna V, et al. 18F-florbetapir binds specifically to myocardial light chain and transthyretin amyloid deposits: Autoradiography study. Circ Cardiovasc Imaging 2015;8:e002954.CrossRefGoogle Scholar
  20. 20.
    Law WP, Wang WY, Moore PT, Mollee PN, Ng AC. Cardiac amyloid imaging with 18F-florbetaben PET: A pilot study. J Nucl Med 2016;57:1733-9.CrossRefGoogle Scholar
  21. 21.
    Wagner T, Page J, Burniston M, Skillen A, Ross JC, Manwani R, et al. Extracardiac (18)F-florbetapir imaging in patients with systemic amyloidosis: More than hearts and minds. Eur J Nucl Med Mol Imaging 2018;45:1129-38.CrossRefGoogle Scholar
  22. 22.
    Dietemann S, Nkoulou R. Amyloid PET imaging in cardiac amyloidosis: A pilot study using (18)F-flutemetamol positron emission tomography. Ann Nucl Med 2019;33(8):624-8.CrossRefGoogle Scholar
  23. 23.
    Van Der Gucht A, Cottereau AS, Abulizi M, Guellich A, Blanc-Durand P, Israel JM, et al. Apical sparing pattern of left ventricular myocardial (99m)Tc-HMDP uptake in patients with transthyretin cardiac amyloidosis. J Nucl Cardiol 2018;25:2072-9.CrossRefGoogle Scholar

Copyright information

© American Society of Nuclear Cardiology 2019

Authors and Affiliations

  • Mukedaisi Abulizi
    • 1
    • 2
  • Islem Sifaoui
    • 1
    • 2
  • Mijiti Wuliya-Gariepy
    • 1
    • 3
  • Mounira Kharoubi
    • 2
    • 3
  • Jean-Marc Israël
    • 1
  • Berivan Emsen
    • 1
  • Diane Bodez
    • 2
    • 3
  • Aurélien Monnet
    • 4
  • David Didierlaurent
    • 4
  • Vania Tacher
    • 1
    • 2
  • Alain Luciani
    • 1
  • Thibaud Damy
    • 2
    • 3
  • Jean-François Deux
    • 1
    • 2
  • Emmanuel Itti
    • 1
    • 2
    Email author
  1. 1.SyMPTOm PET/MRI platform, Departments of Nuclear Medicine and RadiologyCHU Henri Mondor Hospital, AP-HP/U-PECCréteilFrance
  2. 2.Amyloid Research Institute, IMRB U955, U-PECCréteilFrance
  3. 3.Department of CardiologyCHU Henri Mondor, AP-HP/U-PECCréteilFrance
  4. 4.Siemens HealthineersErlangenGermany

Personalised recommendations