Journal of Nuclear Cardiology

, Volume 26, Issue 6, pp 2065–2123 | Cite as

ASNC/AHA/ASE/EANM/HFSA/ISA/SCMR/SNMMI expert consensus recommendations for multimodality imaging in cardiac amyloidosis: Part 1 of 2—evidence base and standardized methods of imaging

  • Sharmila DorbalaEmail author
  • Yukio Ando
  • Sabahat Bokhari
  • Angela Dispenzieri
  • Rodney H. Falk
  • Victor A. Ferrari
  • Marianna Fontana
  • Olivier Gheysens
  • Julian D. Gillmore
  • Andor W. J. M. Glaudemans
  • Mazen A. Hanna
  • Bouke P. C. Hazenberg
  • Arnt V. Kristen
  • Raymond Y. Kwong
  • Mathew S. Maurer
  • Giampaolo Merlini
  • Edward J. Miller
  • James C. Moon
  • Venkatesh L. Murthy
  • C. Cristina Quarta
  • Claudio Rapezzi
  • Frederick L. Ruberg
  • Sanjiv J. Shah
  • Riemer H. J. A. Slart
  • Hein J. Verberne
  • Jamieson M. Bourque

Writing Group Members

Sharmila Dorbala, MD, MPH, FASNC (Chair)a

Yukio Ando, MD, PhDb

Sabahat Bokhari, MDc

Angela Dispenzieri, MDd

Rodney H. Falk, MDa

Victor A. Ferrari, MDe

Marianna Fontana, PhDf

Olivier Gheysens, MD, PhDg

Julian D. Gillmore, MD, PhDf

Andor W.J.M. Glaudemans, MD, PhDh

Mazen A. Hanna, MDi

Bouke P.C. Hazenberg, MD, PhDj

Arnt V. Kristen, MDk

Raymond Y. Kwong, MD, MPHa

Mathew S. Maurer, MDc

Giampaolo Merlini, MDl,l1

Edward J. Miller, MD, PhDm

James C. Moon, MDf

Venkatesh L. Murthy, MD, PhDn

C. Cristina Quarta, MD, PhDf

Claudio Rapezzi, MDo

Frederick L. Ruberg, MDp

Sanjiv J. Shah, MDq

Riemer H.J.A. Slart, MDh

Hein J. Verberne, MD, PhDr

Jamieson M. Bourque, MD, MHS, FASNC (Co-Chair)s

aCardiac Amyloidosis Program, Cardiovascular Imaging Program, Departments of Radiology and Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, bDepartment of Neurology, Graduate School of Medical Sciences, Kumamoto University, Japan, cColumbia University Medical...



Amyloid immunoglobulin light chain


Amyloid transthyretin


99mTc-3,3-Diphosphono-1,2-propanodicarboxylic acid


Extracellular volume


Ejection fraction




Late gadolinium enhancement


Left ventricular







We would like to thank the reviewers of this document for their input, which has significantly improved the quality of this document, including Renée P. Bullock-Palmer, MD, FACC, FASNC, FASE, FSCCT; Dennis A. Calnon, MD, FASNC; Marcelo F. Di Carli, MD; Martha Grogan, MD; Phillip Hawkins, PhD, FMedSci; Wael A. Jaber, MD, FACC, FAHA; Prem Soman, MD, FASNC; James E. Udelson, MD, FACC; Ashutosh D. Wechalekar, DM, MRCP, FRCPath.


  1. 1.
    Child JS, Levisman JA, Abbasi AS, MacAlpin RN. Echocardiographic manifestations of infiltrative cardiomyopathy. A report of seven cases due to amyloid. Chest 1976;70:726-31.Google Scholar
  2. 2.
    Braun SD, Lisbona R, Novales-Diaz JA, Sniderman A. Myocardial uptake of 99mTc-phosphate tracer in amyloidosis. Clin Nucl Med 1979;4:244-5.Google Scholar
  3. 3.
    Gillmore JD, Maurer MS, Falk RH, Merlini G, Damy T, Dispenzieri A, et al. Nonbiopsy diagnosis of cardiac transthyretin amyloidosis. Circulation 2016;133:2404-12.Google Scholar
  4. 4.
    Alexander KM, Orav J, Singh A, Jacob SA, Menon A, Padera RF, et al. Geographic disparities in reported US amyloidosis mortality from 1979 to 2015: Potential underdetection of cardiac amyloidosis. JAMA Cardiol 2018;3:865-70.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Sipe JD, Benson MD, Buxbaum JN, Ikeda SI, Merlini G, Saraiva MJ, et al. Amyloid fibril proteins and amyloidosis: Chemical identification and clinical classification International Society of Amyloidosis 2016 Nomenclature Guidelines. Amyloid 2016;23:209-13.Google Scholar
  6. 6.
    Benson MD, Buxbaum JN, Eisenberg DS, Merlini G, Saraiva MJM, Sekijima Y, et al. Amyloid nomenclature2018: Recommendations by the International Society of Amyloidosis (ISA) nomenclature committee. Amyloid 2019;2019:1-5.Google Scholar
  7. 7.
    Muchtar E, Gertz MA, Kumar SK, Lacy MQ, Dingli D, Buadi FK, et al. Improved outcomes for newly diagnosed AL amyloidosis over the years 2000-2014: Cracking the glass ceiling of early death. Blood 2017;129:2111-9.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Siddiqi OK, Ruberg FL. Cardiac amyloidosis: An update on pathophysiology, diagnosis, and treatment. Trends Cardiovasc Med 2018;28:10-21.Google Scholar
  9. 9.
    Perlini S, Salinaro F, Musca F, Mussinelli R, Boldrini M, Raimondi A, et al. Prognostic value of depressed midwall systolic function in cardiac light-chain amyloidosis. J Hypertens 2014;32:1121-31 discussion 1131.Google Scholar
  10. 10.
    Kyle RA, Linos A, Beard CM, Linke RP, Gertz MA, O’Fallon WM, et al. Incidence and natural history of primary systemic amyloidosis in Olmsted County, Minnesota, 1950 through 1989. Blood 1992;79:1817-22.Google Scholar
  11. 11.
    Pinney JH, Smith CJ, Taube JB, Lachmann HJ, Venner CP, Gibbs SD, et al. Systemic amyloidosis in England: An epidemiological study. Br J Haematol 2013;161:525-32.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Quock TP, Yan T, Chang E, Guthrie S, Broder MS. Epidemiology of AL amyloidosis: A real-world study using US claims data. Blood Adv 2018;2:1046-53.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Gonzalez-Lopez E, Gallego-Delgado M, Guzzo-Merello G, de Haro-Del Moral FJ, Cobo-Marcos M, Robles C, et al. Wild-type transthyretin amyloidosis as a cause of heart failure with preserved ejection fraction. Eur Heart J 2015;36:2585-94.Google Scholar
  14. 14.
    Castano A, Narotsky DL, Hamid N, Khalique OK, Morgenstern R, DeLuca A, et al. Unveiling transthyretin cardiac amyloidosis and its predictors among elderly patients with severe aortic stenosis undergoing transcatheter aortic valve replacement. Eur Heart J 2017;38:2879-87.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Bennani Smires Y, Victor G, Ribes D, Berry M, Cognet T, Mejean S, et al. Pilot study for left ventricular imaging phenotype of patients over 65 years old with heart failure and preserved ejection fraction: The high prevalence of amyloid cardiomyopathy. Int J Cardiovasc Imaging 2016;32:1403-13.Google Scholar
  16. 16.
    Jacobson DR, Alexander AA, Tagoe C, Buxbaum JN. Prevalence of the amyloidogenic transthyretin (TTR) V122I allele in 14 333 African-Americans. Amyloid 2015;22:171-4.Google Scholar
  17. 17.
    Dungu JN, Papadopoulou SA, Wykes K, Mahmood I, Marshall J, Valencia O, et al. Afro-Caribbean heart failure in the United Kingdom: Cause, outcomes, and ATTR V122I cardiac amyloidosis. Circ Heart Fail 2016. Scholar
  18. 18.
    Adams D, Gonzalez-Duarte A, O’Riordan WD, Yang CC, Ueda M, Kristen AV, et al. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N Engl J Med 2018;379:11-21.Google Scholar
  19. 19.
    Benson MD, Waddington-Cruz M, Berk JL, Polydefkis M, Dyck PJ, Wang AK, et al. Inotersen treatment for patients with hereditary transthyretin amyloidosis. N Engl J Med 2018;379:22-31.Google Scholar
  20. 20.
    Richards DB, Cookson LM, Berges AC, Barton SV, Lane T, Ritter JM, et al. Therapeutic clearance of amyloid by antibodies to serum amyloid P component. N Engl J Med 2015;373:1106-14.Google Scholar
  21. 21.
    Comenzo RL, Vosburgh E, Simms RW, Bergethon P, Sarnacki D, Finn K, et al. Dose-intensive melphalan with blood stem cell support for the treatment of AL amyloidosis: one-year follow-up in five patients. Blood 1996;88:2801-6.Google Scholar
  22. 22.
    Maurer MS, Schwartz JH, Gundapaneni B, Elliott PM, Merlini G, Waddington-Cruz M, et al. Tafamidis treatment for patients with transthyretin amyloid cardiomyopathy. N Engl J Med 2018;379:1007-16.Google Scholar
  23. 23.
    Pellikka PA, Holmes DR Jr, Edwards WD, Nishimura RA, Tajik AJ, Kyle RA. Endomyocardial biopsy in 30 patients with primary amyloidosis and suspected cardiac involvement. Arch Intern Med 1988;148:662-6.Google Scholar
  24. 24.
    Satoskar AA, Efebera Y, Hasan A, Brodsky S, Nadasdy G, Dogan A, et al. Strong transthyretin immunostaining: potential pitfall in cardiac amyloid typing. Am J Surg Pathol 2011;35:1685-90.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Vrana JA, Gamez JD, Madden BJ, Theis JD, Bergen HR 3rd, Dogan A. Classification of amyloidosis by laser microdissection and mass spectrometry-based proteomic analysis in clinical biopsy specimens. Blood 2009;114:4957-9.Google Scholar
  26. 26.
    Kumar S, Dispenzieri A, Lacy MQ, Hayman SR, Buadi FK, Colby C, et al. Revised prognostic staging system for light chain amyloidosis incorporating cardiac biomarkers and serum free light chain measurements. J Clin Oncol 2012;30:989-95.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Wechalekar AD, Schonland SO, Kastritis E, Gillmore JD, Dimopoulos MA, Lane T, et al. A European collaborative study of treatment outcomes in 346 patients with cardiac stage III AL amyloidosis. Blood 2013;121:3420-7.Google Scholar
  28. 28.
    Gertz MA, Comenzo R, Falk RH, Fermand JP, Hazenberg BP, Hawkins PN, et al. Definition of organ involvement and treatment response in immunoglobulin light chain amyloidosis (AL): a consensus opinion from the 10th International Symposium on Amyloid and Amyloidosis, Tours, France, 18-22 April 2004. Am J Hematol 2005;79:319-28.Google Scholar
  29. 29.
    Madan S, Kumar SK, Dispenzieri A, Lacy MQ, Hayman SR, Buadi FK, et al. High-dose melphalan and peripheral blood stem cell transplantation for light-chain amyloidosis with cardiac involvement. Blood 2012;119:1117-22.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Grogan M, Scott CG, Kyle RA, Zeldenrust SR, Gertz MA, Lin G, et al. Natural history of wild-type transthyretin cardiac amyloidosis and risk stratification using a novel staging system. J Am Coll Cardiol 2016;68:1014-20.Google Scholar
  31. 31.
    Hutt DF, Fontana M, Burniston M, Quigley AM, Petrie A, Ross JC, et al. Prognostic utility of the Perugini grading of 99mTc-DPD scintigraphy in transthyretin (ATTR) amyloidosis and its relationship with skeletal muscle and soft tissue amyloid. Eur Heart J Cardiovasc Imaging 2017;18:1344-50.Google Scholar
  32. 32.
    Gillmore JD, Damy T, Fontana M, Hutchinson M, Lachmann HJ, Martinez-Naharro A, et al. A new staging system for cardiac transthyretin amyloidosis. Eur Heart J 2018;39:2799-806.Google Scholar
  33. 33.
    Chew C, Ziady GM, Raphael MJ, Oakley CM. The functional defect in amyloid heart disease the “stiff heart” syndrome. Am J Cardiol 1975;36:438-44.Google Scholar
  34. 34.
    Falk RH, Quarta CC. Echocardiography in cardiac amyloidosis. Heart Fail Rev 2015;20:125-31.Google Scholar
  35. 35.
    Ruberg FL, Maurer MS, Judge DP, Zeldenrust S, Skinner M, Kim AY, et al. Prospective evaluation of the morbidity and mortality of wild-type and V122I mutant transthyretin amyloid cardiomyopathy: The Transthyretin Amyloidosis Cardiac Study (TRACS). Am Heart J 2012;164:e1.Google Scholar
  36. 36.
    Falk RH, Alexander KM, Liao R, Dorbala S. AL (Light-Chain) cardiac amyloidosis: A review of diagnosis and therapy. J Am Coll Cardiol 2016;68:1323-41.Google Scholar
  37. 37.
    Wechalekar AD, Gillmore JD, Hawkins PN. Systemic amyloidosis. Lancet 2016;387:2641-54.Google Scholar
  38. 38.
    Kirkpatrick JN, Lang RM. Heart failure: hemodynamic assessment using echocardiography. Curr Cardiol Rep 2008;10:240-6.Google Scholar
  39. 39.
    Mitter SS, Shah SJ, Thomas JD. A test in context: E/A and E/e’ to assess diastolic dysfunction and LV filling pressure. J Am Coll Cardiol 2017;69:1451-64.Google Scholar
  40. 40.
    Nagueh SF, Smiseth OA, Appleton CP, Byrd BF 3rd, Dokainish H, Edvardsen T, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 2016;29:277-314.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Nochioka K, Quarta CC, Claggett B, Roca GQ, Rapezzi C, Falk RH, et al. Left atrial structure and function in cardiac amyloidosis. Eur Heart J Cardiovasc Imaging 2017;18:1128-37.Google Scholar
  42. 42.
    Banypersad SM, Moon JC, Whelan C, Hawkins PN, Wechalekar AD. Updates in cardiac amyloidosis: A review. J Am Heart Assoc 2012;1:e000364.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Falk RH, Lee VW, Rubinow A, Hood WB Jr, Cohen AS. Sensitivity of technetium-99m-pyrophosphate scintigraphy in diagnosing cardiac amyloidosis. Am Heart J 1983;51:826-30.Google Scholar
  44. 44.
    Gertz MA, Brown ML, Hauser MF, Kyle RA. Utility of technetium Tc 99m pyrophosphate bone scanning in cardiac amyloidosis. Arch Intern Med 1987;147:1039-44.Google Scholar
  45. 45.
    Hartmann A, Frenkel J, Hopf R, Baum RP, Hör G, Schneider M, et al. Is technetium-99 m-pyrophosphate scintigraphy valuable in the diagnosis of cardiac amyloidosis? Int J Card Imaging 1990;5:227-31.Google Scholar
  46. 46.
    Schiff S, Bateman T, Moffatt R, Davidson R, Berman D. Diagnostic considerations in cardiomyopathy: Unique scintigraphic pattern of diffuse biventricular technetium-99m-pyrophosphate uptake in amyloid heart disease. Am Heart J 1982;103:562-3.Google Scholar
  47. 47.
    Wizenberg TA, Muz J, Sohn YH, Samlowski W, Weissler AM. Value of positive myocardial technetium-99m-pyrophosphate scintigraphy in the noninvasive diagnosis of cardiac amyloidosis. Am Heart J 1982;103:468-73.Google Scholar
  48. 48.
    Yamamoto Y, Onoguchi M, Haramoto M, Kodani N, Komatsu A, Kitagaki H, et al. Novel method for quantitative evaluation of cardiac amyloidosis using (201)TlCl and (99m)Tc-PYP SPECT. Ann Nucl Med 2012;26:634-43.Google Scholar
  49. 49.
    Carroll JD, Gaasch WH, McAdam KP. Amyloid cardiomyopathy: Characterization by a distinctive voltage/mass relation. Am J Cardiol 1982;49:9-13.Google Scholar
  50. 50.
    Cueto-Garcia L, Reeder GS, Kyle RA, Wood DL, Seward JB, Naessens J, et al. Echocardiographic findings in systemic amyloidosis: spectrum of cardiac involvement and relation to survival. J Am Coll Cardiol 1985;6:737-43.Google Scholar
  51. 51.
    Quarta CC, Solomon SD, Uraizee I, Kruger J, Longhi S, Ferlito M, et al. Left ventricular structure and function in transthyretin-related vs light-chain cardiac amyloidosis. Circulation 2014;129:1840-9.Google Scholar
  52. 52.
    Rapezzi C, Merlini G, Quarta CC, Riva L, Longhi S, Leone O, et al. Systemic cardiac amyloidoses: Disease profiles and clinical courses of the 3 main types. Circulation 2009;120:1203-12.Google Scholar
  53. 53.
    Siqueira-Filho AG, Cunha CL, Tajik AJ, Seward JB, Schattenberg TT, Giuliani ER. M-mode and two-dimensional echocardiographic features in cardiac amyloidosis. Circulation 1981;63:188-96.Google Scholar
  54. 54.
    Gonzalez-Lopez E, Gagliardi C, Dominguez F, Quarta CC, de Haro-Del Moral FJ, Milandri A, et al. Clinical characteristics of wild-type transthyretin cardiac amyloidosis: Disproving myths. Eur Heart J 2017;38:1895-904.Google Scholar
  55. 55.
    Buss SJ, Emami M, Mereles D, Korosoglou G, Kristen AV, Voss A, et al. Longitudinal left ventricular function for prediction of survival in systemic light-chain amyloidosis: Incremental value compared with clinical and biochemical markers. J Am Coll Cardiol 2012;60:1067-76.Google Scholar
  56. 56.
    Koyama J, Ray-Sequin PA, Falk RH. Longitudinal myocardial function assessed by tissue velocity, strain, and strain rate tissue Doppler echocardiography in patients with AL (primary) cardiac amyloidosis. Circulation 2003;107:2446-52.Google Scholar
  57. 57.
    Koyama J, Ray-Sequin PA, Davidoff R, Falk RH. Usefulness of pulsed tissue Doppler imaging for evaluating systolic and diastolic left ventricular function in patients with AL (primary) amyloidosis. Am J Cardiol 2002;89:1067-71.Google Scholar
  58. 58.
    Sallach JA, Klein AL. Tissue Doppler imaging in the evaluation of patients with cardiac amyloidosis. Curr Opin Cardiol 2004;19:464-71.Google Scholar
  59. 59.
    Bellavia D, Abraham RS, Pellikka PA, Dispenzieri A, Burnett JC Jr, Al-Zahrani GB, et al. Utility of Doppler myocardial imaging, cardiac biomarkers, and clonal immunoglobulin genes to assess left ventricular performance and stratify risk following peripheral blood stem cell transplantation in patients with systemic light chain amyloidosis (Al). J Am Soc Echocardiogr 2011;24:444-54.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Bellavia D, Abraham TP, Pellikka PA, Al-Zahrani GB, Dispenzieri A, Oh JK, et al. Detection of left ventricular systolic dysfunction in cardiac amyloidosis with strain rate echocardiography. J Am Soc Echocardiogr 2007;20:1194-202.Google Scholar
  61. 61.
    Bellavia D, Pellikka PA, Abraham TP, Al-Zahrani GB, Dispenzieri A, Oh JK, et al. Evidence of impaired left ventricular systolic function by Doppler myocardial imaging in patients with systemic amyloidosis and no evidence of cardiac involvement by standard two-dimensional and Doppler echocardiography. Am J Cardiol 2008;101:1039-45.Google Scholar
  62. 62.
    Bellavia D, Pellikka PA, Al-Zahrani GB, Abraham TP, Dispenzieri A, Miyazaki C, et al. Independent predictors of survival in primary systemic (Al) amyloidosis, including cardiac biomarkers and left ventricular strain imaging: an observational cohort study. J Am Soc Echocardiogr 2010;23:643-52.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Phelan D, Collier P, Thavendiranathan P, Popovic ZB, Hanna M, Plana JC, et al. Relative apical sparing of longitudinal strain using two-dimensional speckle-tracking echocardiography is both sensitive and specific for the diagnosis of cardiac amyloidosis. Heart 2012;98:1442-8.Google Scholar
  64. 64.
    Liu D, Hu K, Niemann M, Herrmann S, Cikes M, Stork S, et al. Effect of combined systolic and diastolic functional parameter assessment for differentiation of cardiac amyloidosis from other causes of concentric left ventricular hypertrophy. Circ Cardiovasc Imaging 2013;6:1066-72.Google Scholar
  65. 65.
    Tendler A, Helmke S, Teruya S, Alvarez J, Maurer MS. The myocardial contraction fraction is superior to ejection fraction in predicting survival in patients with AL cardiac amyloidosis. Amyloid 2015;22:61-6.Google Scholar
  66. 66.
    Arenja N, Fritz T, Andre F, Riffel JH, Aus dem Siepen F, Ochs M, et al. Myocardial contraction fraction derived from cardiovascular magnetic resonance cine images-reference values and performance in patients with heart failure and left ventricular hypertrophy. Eur Heart J Cardiovasc Imaging 2017;18:1414-22.Google Scholar
  67. 67.
    Milani P, Dispenzieri A, Scott CG, Gertz MA, Perlini S, Mussinelli R, et al. Independent prognostic value of stroke volume index in patients with immunoglobulin light chain amyloidosis. Circ Cardiovasc Imaging 2018;11:e006588.PubMedPubMedCentralGoogle Scholar
  68. 68.
    Kwong RY, Heydari B, Abbasi S, Steel K, Al-Mallah M, Wu H, et al. Characterization of Cardiac Amyloidosis by Atrial Late Gadolinium Enhancement Using Contrast-Enhanced Cardiac Magnetic Resonance Imaging and Correlation With Left Atrial Conduit and Contractile Function. Am J Cardiol. 2015;116:622-9.PubMedPubMedCentralGoogle Scholar
  69. 69.
    El-Am E, Dispenzieri A, Grogan M, Ammash N, Melduni R, White R, et al. Outcomes of direct current cardioversion in adults with cardiac amyloidosis. Eur Heart J 2018.Google Scholar
  70. 70.
    Bellavia D, Pellikka PA, Dispenzieri A, Scott CG, Al-Zahrani GB, Grogan M, et al. Comparison of right ventricular longitudinal strain imaging, tricuspid annular plane systolic excursion, and cardiac biomarkers for early diagnosis of cardiac involvement and risk stratification in primary systematic (AL) amyloidosis: A 5-year cohort study. Eur Heart J Cardiovasc Imaging 2012;13:680-9.Google Scholar
  71. 71.
    Rapezzi C, Lorenzini M, Longhi S, Milandri A, Gagliardi C, Bartolomei I, et al. Cardiac amyloidosis: The great pretender. Heart Fail Rev 2015;20:117-24.Google Scholar
  72. 72.
    Damy T, Maurer MS, Rapezzi C, Plante-Bordeneuve V, Karayal ON, Mundayat R, et al. Clinical, ECG and echocardiographic clues to the diagnosis of TTR-related cardiomyopathy. Open Heart 2016;3:e000289.PubMedPubMedCentralGoogle Scholar
  73. 73.
    Rahman JE, Helou EF, Gelzer-Bell R, Thompson RE, Kuo C, Rodriguez ER, et al. Noninvasive diagnosis of biopsy-proven cardiac amyloidosis. J Am Coll Cardiol 2004;43:410-5.Google Scholar
  74. 74.
    Maceira AM, Joshi J, Prasad SK, Moon JC, Perugini E, Harding I, et al. Cardiovascular magnetic resonance in cardiac amyloidosis. Circulation 2005;111:186-93.Google Scholar
  75. 75.
    Pandey T, Jambhekar K, Shaikh R, Lensing S, Viswamitra S. Utility of the inversion scout sequence (TI scout) in diagnosing myocardial amyloid infiltration. Int J Cardiovasc Imaging 2013;29:103-12.Google Scholar
  76. 76.
    Fontana M, Pica S, Reant P, Abdel-Gadir A, Treibel TA, Banypersad SM, et al. Prognostic value of late gadolinium enhancement cardiovascular magnetic resonance in cardiac amyloidosis. Circulation 2015;132:1570-9.PubMedPubMedCentralGoogle Scholar
  77. 77.
    Vogelsberg H, Mahrholdt H, Deluigi CC, Yilmaz A, Kispert EM, Greulich S, et al. Cardiovascular magnetic resonance in clinically suspected cardiac amyloidosis: Noninvasive imaging compared to endomyocardial biopsy. J Am Coll Cardiol 2008;51:1022-30.Google Scholar
  78. 78.
    Syed IS, Glockner JF, Feng D, Araoz PA, Martinez MW, Edwards WD, et al. Role of cardiac magnetic resonance imaging in the detection of cardiac amyloidosis. JACC Cardiovasc Imaging 2010;3:155-64.Google Scholar
  79. 79.
    White JA, Kim HW, Shah D, Fine N, Kim KY, Wendell DC, et al. CMR imaging with rapid visual T1 assessment predicts mortality in patients suspected of cardiac amyloidosis. JACC Cardiovasc Imaging 2014;7:143-56.PubMedPubMedCentralGoogle Scholar
  80. 80.
    Ruberg FL, Appelbaum E, Davidoff R, Ozonoff A, Kissinger KV, Harrigan C, et al. Diagnostic and prognostic utility of cardiovascular magnetic resonance imaging in light-chain cardiac amyloidosis. Am J Cardiol 2009;103:544-9.Google Scholar
  81. 81.
    Austin BA, Tang WH, Rodriguez ER, Tan C, Flamm SD, Taylor DO, et al. Delayed hyper-enhancement magnetic resonance imaging provides incremental diagnostic and prognostic utility in suspected cardiac amyloidosis. JACC Cardiovasc Imaging 2009;2:1369-77.Google Scholar
  82. 82.
    Karamitsos TD, Piechnik SK, Banypersad SM, Fontana M, Ntusi NB, Ferreira VM, et al. Noncontrast T1 mapping for the diagnosis of cardiac amyloidosis. JACC Cardiovasc Imaging 2013;6:488-97.Google Scholar
  83. 83.
    Zhao L, Tian Z, Fang Q. Diagnostic accuracy of cardiovascular magnetic resonance for patients with suspected cardiac amyloidosis: A systematic review and meta-analysis. BMC Cardiovasc Disord 2016;16:129.PubMedPubMedCentralGoogle Scholar
  84. 84.
    Fontana M, Banypersad SM, Treibel TA, Maestrini V, Sado DM, White SK, et al. Native T1 mapping in transthyretin amyloidosis. JACC Cardiovasc Imaging 2014;7:157-65.Google Scholar
  85. 85.
    Banypersad SM, Sado DM, Flett AS, Gibbs SD, Pinney JH, Maestrini V, et al. Quantification of myocardial extracellular volume fraction in systemic AL amyloidosis: an equilibrium contrast cardiovascular magnetic resonance study. Circ Cardiovasc Imaging 2013;6:34-9.Google Scholar
  86. 86.
    Messroghli DR, Moon JC, Ferreira VM, Grosse-Wortmann L, He T, Kellman P, et al. Clinical recommendations for cardiovascular magnetic resonance mapping of T1, T2, T2* and extracellular volume: A consensus statement by the Society for Cardiovascular Magnetic Resonance (SCMR) endorsed by the European Association for Cardiovascular Imaging (EACVI). J Cardiovasc Magn Reson 2018;20:9.PubMedPubMedCentralGoogle Scholar
  87. 87.
    Martinez-Naharro A, Kotecha T, Norrington K, Boldrini M, Rezk T, Quarta C, et al. Native T1 and extracellular volume in transthyretin amyloidosis. JACC Cardiovasc Imaging 2019;12:810-9. Scholar
  88. 88.
    Martinez-Naharro A, Abdel-Gadir A, Treibel TA, Zumbo G, Knight DS, Rosmini S, et al. CMR-verified regression of cardiac AL amyloid after chemotherapy. JACC Cardiovasc Imaging 2018;11:152-4.Google Scholar
  89. 89.
    Kotecha T, Martinez-Naharro A, Treibel TA, Francis R, Nordin S, Abdel-Gadir A, et al. Myocardial edema and prognosis in amyloidosis. J Am Coll Cardiol 2018;71:2919-31.Google Scholar
  90. 90.
    Fontana M, Banypersad SM, Treibel TA, Abdel-Gadir A, Maestrini V, Lane T, et al. Differential myocyte responses in patients with cardiac transthyretin amyloidosis and light-chain amyloidosis: A cardiac MR imaging study. Radiology 2015;277:388-97.Google Scholar
  91. 91.
    Dungu JN, Valencia O, Pinney JH, Gibbs SD, Rowczenio D, Gilbertson JA, et al. CMR-based differentiation of AL and ATTR cardiac amyloidosis. JACC Cardiovasc Imaging 2014;7:133-42.Google Scholar
  92. 92.
    Antoni G, Lubberink M, Estrada S, Axelsson J, Carlson K, Lindsjo L, et al. In vivo visualization of amyloid deposits in the heart with 11C-PIB and PET. J Nucl Med 2013;54:213-20.Google Scholar
  93. 93.
    Dorbala S, Vangala D, Semer J, Strader C, Bruyere JR, Di Carli MF, et al. Imaging cardiac amyloidosis: a pilot study using (18)F-florbetapir positron emission tomography. Eur J Nucl Med Mol Imaging 2014;41:1652-62.Google Scholar
  94. 94.
    Law WP, Wang WY, Moore PT, Mollee PN, Ng AC. Cardiac amyloid imaging with 18F-florbetaben positron emission tomography: A pilot study. J Nucl Med 2016;57:1733-9.Google Scholar
  95. 95.
    Lee SP, Lee ES, Choi H, Im HJ, Koh Y, Lee MH, et al. (11)C-Pittsburgh B PET imaging in cardiac amyloidosis. JACC Cardiovasc Imaging 2015;8:50-9.Google Scholar
  96. 96.
    Osborne DR, Acuff SN, Stuckey A, Wall JS. A routine PET/CT protocol with streamlined calculations for assessing cardiac amyloidosis using (18)F-florbetapir. Front Cardiovasc Med 2015;2:23.PubMedPubMedCentralGoogle Scholar
  97. 97.
    Nakata T, Shimamoto K, Yonekura S, Kobayashi N, Sugiyama T, Imai K, et al. Cardiac sympathetic denervation in transthyretin-related familial amyloidotic polyneuropathy: detection with iodine-123-MIBG. J Nucl Med 1995;36:1040-2.Google Scholar
  98. 98.
    Tanaka M, Hongo M, Kinoshita O, Takabayashi Y, Fujii T, Yazaki Y, et al. Iodine-123 metaiodobenzylguanidine scintigraphic assessment of myocardial sympathetic innervation in patients with familial amyloid polyneuropathy. J Am Coll Cardiol 1997;29:168-74.Google Scholar
  99. 99.
    Pepys MB, Dyck RF, de Beer FC, Skinner M, Cohen AS. Binding of serum amyloid P-component (SAP) by amyloid fibrils. Clin Exp Immunol 1979;38:284-93.PubMedPubMedCentralGoogle Scholar
  100. 100.
    Suhr OB, Lundgren E, Westermark P. One mutation, two distinct disease variants: unravelling the impact of transthyretin amyloid fibril composition. J Intern Med 2017;281:337-47.PubMedPubMedCentralGoogle Scholar
  101. 101.
    Cappelli F, Gallini C, Di Mario C, Costanzo EN, Vaggelli L, Tutino F, et al. Accuracy of 99mTc-hydroxymethylene diphosphonate scintigraphy for diagnosis of transthyretin cardiac amyloidosis. J Nucl Cardiol 2019;26:497-504. Scholar
  102. 102.
    Galat A, Rosso J, Guellich A, Van Der Gucht A, Rappeneau S, Bodez D, et al. Usefulness of (99m)Tc-HMDP scintigraphy for the etiologic diagnosis and prognosis of cardiac amyloidosis. Amyloid 2015;22:210-20. Scholar
  103. 103.
    Quarta CC, Guidalotti PL, Longhi S, Pettinato C, Leone O, Ferlini A, et al. Defining the diagnosis in echocardiographically suspected senile systemic amyloidosis. JACC Cardiovasc Imaging 2012;5:755-8. Scholar
  104. 104.
    Rapezzi C, Guidalotti P, Salvi F, Riva L, Perugini E. Usefulness of 99mTc-DPD scintigraphy in cardiac amyloidosis. J Am Coll Cardiol 2008;51:1509-10. reply 1510.CrossRefGoogle Scholar
  105. 105.
    Rapezzi C, Quarta CC, Guidalotti PL, Pettinato C, Fanti S, Leone O, et al. Role of (99m)Tc-DPD scintigraphy in diagnosis and prognosis of hereditary transthyretin-related cardiac amyloidosis. JACC Cardiovasc Imaging 2011;4:659-70. Scholar
  106. 106.
    Hutt DF, Quigley AM, Page J, Hall ML, Burniston M, Gopaul D, et al. Utility and limitations of 3,3-diphosphono-1,2-propanodicarboxylic acid scintigraphy in systemic amyloidosis. Eur Heart J Cardiovasc Imaging 2014;15:1289-98. Scholar
  107. 107.
    Haq M, Pawar S, Berk JL, Miller EJ, Ruberg FL. Can (99m)Tc-pyrophosphate aid in early detection of cardiac involvement in asymptomatic variant TTR amyloidosis? JACC Cardiovasc Imaging 2017;10:713-4. Scholar
  108. 108.
    Glaudemans AW, van Rheenen RW, van den Berg MP, Noordzij W, Koole M, Blokzijl H, et al. Bone scintigraphy with (99m)technetium-hydroxymethylene diphosphonate allows early diagnosis of cardiac involvement in patients with transthyretin-derived systemic amyloidosis. Amyloid 2014;21:35-44. Scholar
  109. 109.
    Hutt DF, Gilbertson J, Quigley AM, Wechalekar AD. (99m)Tc-DPD scintigraphy as a novel imaging modality for identification of skeletal muscle amyloid deposition in light-chain amyloidosis. Amyloid 2016;23:134-5. Scholar
  110. 110.
    Bach-Gansmo T, Wien TN, Londalen A, Halvorsen E. Myocardial uptake of bone scintigraphic agents associated with increased pulmonary uptake. Clin Physiol Funct Imaging 2016;36:237-41.Google Scholar
  111. 111.
    Treglia G, Glaudemans A, Bertagna F, Hazenberg BPC, Erba PA, Giubbini R, et al. Diagnostic accuracy of bone scintigraphy in the assessment of cardiac transthyretin-related amyloidosis: a bivariate meta-analysis. Eur J Nucl Med Mol Imaging 2018;45:1945-55. Scholar
  112. 112.
    Perugini E, Guidalotti PL, Salvi F, Cooke RM, Pettinato C, Riva L, et al. Noninvasive etiologic diagnosis of cardiac amyloidosis using 99mTc-3,3-diphosphono-1,2-propanodicarboxylic acid scintigraphy. J Am Coll Cardiol 2005;46:1076-84.Google Scholar
  113. 113.
    Bokhari S, Castaño A, Pozniakoff T, Deslisle S, Latif F, Maurer MS. (99m)Tc-pyrophosphate scintigraphy for differentiating light-chain cardiac amyloidosis from the transthyretin-related familial and senile cardiac amyloidoses. Circ Cardiovasc Imaging 2013;6:195-201.PubMedPubMedCentralGoogle Scholar
  114. 114.
    Castano A, Haq M, Narotsky DL, Goldsmith J, Weinberg RL, Morgenstern R, et al. Multicenter study of planar technetium 99m pyrophosphate cardiac imaging: Predicting survival for patients with ATTR cardiac amyloidosis. JAMA Cardiol 2016;1:880-9. Scholar
  115. 115.
    Pilebro B, Arvidsson S, Lindqvist P, Sundstrom T, Westermark P, Antoni G, et al. Positron emission tomography (PET) utilizing Pittsburgh compound B (PIB) for detection of amyloid heart deposits in hereditary transthyretin amyloidosis (ATTR). J Nucl Cardiol 2018;25:240-8.Google Scholar
  116. 116.
    Treibel TA, Fontana M, Gilbertson JA, Castelletti S, White SK, Scully PR, et al. Occult transthyretin cardiac amyloid in severe calcific aortic stenosis: Prevalence and prognosis in patients undergoing surgical aortic valve replacement. Circ Cardiovasc Imaging 2016. Scholar
  117. 117.
    Longhi S, Lorenzini M, Gagliardi C, Milandri A, Marzocchi A, Marrozzini C, et al. Coexistence of degenerative aortic stenosis and wild-type transthyretin-related cardiac amyloidosis. JACC Cardiovasc Imaging 2016;9:325-7. Scholar
  118. 118.
    Morgenstern R, Yeh R, Castano A, Maurer MS, Bokhari S. (18)Fluorine sodium fluoride positron emission tomography, a potential biomarker of transthyretin cardiac amyloidosis. J Nucl Cardiol 2018;25:1559-67. Scholar
  119. 119.
    Van Der Gucht A, Galat A, Rosso J, Guellich A, Garot J, Bodez D, et al. [18F]-NaF PET/CT imaging in cardiac amyloidosis. J Nucl Cardiol 2016;23:846-9.Google Scholar
  120. 120.
    Aprile C, Marinone G, Saponaro R, Bonino C, Merlini G. Cardiac and pleuropulmonary AL amyloid imaging with technetium-99m labelled aprotinin. Eur J Nucl Med 1995;22:1393-401.Google Scholar
  121. 121.
    Han S, Chong V, Murray T, McDonagh T, Hunter J, Poon FW, et al. Preliminary experience of 99mTc-Aprotinin scintigraphy in amyloidosis. Eur J Haematol 2007;79:494-500.Google Scholar
  122. 122.
    Schaadt BK, Hendel HW, Gimsing P, Jonsson V, Pedersen H, Hesse B. 99mTc-aprotinin scintigraphy in amyloidosis. J Nucl Med 2003;44:177-83.Google Scholar
  123. 123.
    Hawkins PN, Lavender JP, Pepys MB. Evaluation of systemic amyloidosis by scintigraphy with 123I-labeled serum amyloid P component. N Engl J Med 1990;323:508-13.Google Scholar
  124. 124.
    Minoshima S, Drzezga AE, Barthel H, Bohnen N, Djekidel M, Lewis DH, et al. SNMMI procedure standard/EANM practice guideline for amyloid PET imaging of the brain 1.0. J Nucl Med 2016;57:1316-22.Google Scholar
  125. 125.
    Sundaram GSM, Dhavale DD, Prior JL, Yan P, Cirrito J, Rath NP, et al. Fluselenamyl: a novel benzoselenazole derivative for PET detection of amyloid plaques (Aβ) in Alzheimer’s disease. Sci Rep 2016;6:35636.PubMedPubMedCentralGoogle Scholar
  126. 126.
    Wagner T, Page J, Burniston M, Skillen A, Ross JC, Manwani R, et al. Extracardiac (18)F-florbetapir imaging in patients with systemic amyloidosis: More than hearts and minds. Eur J Nucl Med Mol Imaging 2018;45:1129-38.PubMedPubMedCentralGoogle Scholar
  127. 127.
    Ezawa N, Katoh N, Oguchi K, Yoshinaga T, Yazaki M, Sekijima Y. Visualization of multiple organ amyloid involvement in systemic amyloidosis using (11)C-PiB PET imaging. Eur J Nucl Med Mol Imaging 2018;45:452-61. Scholar
  128. 128.
    Goldstein DS. Cardiac dysautonomia and survival in hereditary transthyretin amyloidosis. JACC Cardiovasc Imaging 2016;9:1442-5.Google Scholar
  129. 129.
    Coutinho MC, Cortez-Dias N, Cantinho G, Conceicao I, Oliveira A, Bordalo e Sa A, et al. Reduced myocardial 123-iodine metaiodobenzylguanidine uptake: A prognostic marker in familial amyloid polyneuropathy. Circ Cardiovasc Imaging 2013;6:627-36.Google Scholar
  130. 130.
    Delahaye N, Dinanian S, Slama MS, Mzabi H, Samuel D, Adams D, et al. Cardiac sympathetic denervation in familial amyloid polyneuropathy assessed by iodine-123 metaiodobenzylguanidine scintigraphy and heart rate variability. Eur J Nucl Med 1999;26:416-24.Google Scholar
  131. 131.
    Algalarrondo V, Antonini T, Theaudin M, Chemla D, Benmalek A, Lacroix C, et al. Cardiac dysautonomia predicts long-term survival in hereditary transthyretin amyloidosis after liver transplantation. JACC Cardiovasc Imaging 2016;9:1432-41.Google Scholar
  132. 132.
    Pinney JH, Whelan CJ, Petrie A, Dungu J, Banypersad SM, Sattianayagam P, et al. Senile systemic amyloidosis: Clinical features at presentation and outcome. J Am Heart Assoc 2013;2:e000098.PubMedPubMedCentralGoogle Scholar
  133. 133.
    Dingli D, Tan TS, Kumar SK, Buadi FK, Dispenzieri A, Hayman SR, et al. Stem cell transplantation in patients with autonomic neuropathy due to primary (AL) amyloidosis. Neurology 2010;74:913-8.Google Scholar
  134. 134.
    Wechalekar AD, Gillmore JD, Bird J, Cavenagh J, Hawkins S, Kazmi M, et al. Guidelines on the management of AL amyloidosis. Br J Haematol 2015;168:186-206.Google Scholar
  135. 135.
    Noordzij W, Glaudemans AW, van Rheenen RW, Hazenberg BP, Tio RA, Dierckx RA, et al. (123)I-Labelled metaiodobenzylguanidine for the evaluation of cardiac sympathetic denervation in early stage amyloidosis. Eur J Nucl Med Mol Imaging 2012;39:1609-17.PubMedPubMedCentralGoogle Scholar
  136. 136.
    Piekarski E, Chequer R, Algalarrondo V, Eliahou L, Mahida B, Vigne J, et al. Cardiac denervation evidenced by MIBG occurs earlier than amyloid deposits detection by diphosphonate scintigraphy in TTR mutation carriers. Eur J Nucl Med Mol Imaging 2018;45:1108-18.Google Scholar
  137. 137.
    Arbab AS, Koizumi K, Toyama K, Arai T, Yoshitomi T, Araki T. Scan findings of various myocardial SPECT agents in a case of amyloid polyneuropathy with suspected myocardial involvement. Ann Nucl Med 1997;11:139-41.Google Scholar
  138. 138.
    Delahaye N, Rouzet F, Sarda L, Tamas C, Dinanian S, Plante-Bordeneuve V, et al. Impact of liver transplantation on cardiac autonomic denervation in familial amyloid polyneuropathy. Medicine 2006;85:229-38.Google Scholar
  139. 139.
    Hongo M, Urushibata K, Kai R, Takahashi W, Koizumi T, Uchikawa S, et al. Iodine-123 metaiodobenzylguanidine scintigraphic analysis of myocardial sympathetic innervation in patients with AL (primary) amyloidosis. Am Heart J 2002;144:122-9.Google Scholar
  140. 140.
    Lekakis J, Dimopoulos MA, Prassopoulos V, Mavrikakis M, Gerali S, Sifakis N, et al. Myocardial adrenergic denervation in patients with primary (AL) amyloidosis. Amyloid 2003;10:117-20.Google Scholar
  141. 141.
    Watanabe H, Misu K, Hirayama M, Hattori N, Yoshihara T, Doyu M, et al. Low cardiac 123I-MIBG uptake in late-onset familial amyloid polyneuropathy type I (TTR Met30). J Neurol 2001;248:627-9.Google Scholar
  142. 142.
    Migrino RQ, Truran S, Gutterman DD, Franco DA, Bright M, Schlundt B, et al. Human microvascular dysfunction and apoptotic injury induced by AL amyloidosis light chain proteins. J Physiol Heart Circ Physiol 2011;301:H2305-12.Google Scholar
  143. 143.
    Modesto KM, Dispenzieri A, Gertz M, Cauduro SA, Khandheria BK, Seward JB, et al. Vascular abnormalities in primary amyloidosis. Eur Heart J 2007;28:1019-24.Google Scholar
  144. 144.
    Al Suwaidi J, Velianou JL, Gertz MA, Cannon RO 3rd, Higano ST, Holmes DR Jr, et al. Systemic amyloidosis presenting with angina pectoris. Ann Intern Med 1999;131:838-41.Google Scholar
  145. 145.
    Dorbala S, Vangala D, Bruyere J Jr, Quarta C, Kruger J, Padera R, et al. Coronary microvascular dysfunction is related to abnormalities in myocardial structure and function in cardiac amyloidosis. JACC Heart Fail 2014;2:358-67.PubMedPubMedCentralGoogle Scholar
  146. 146.
    Falk RH. Diagnosis and management of the cardiac amyloidoses. Circulation 2005;112:2047-60.Google Scholar
  147. 147.
    Barros-Gomes S, Williams B, Nhola LF, Grogan M, Maalouf JF, Dispenzieri A, et al. Prognosis of light chain amyloidosis with preserved LVEF: Added value of 2D speckle-tracking echocardiography to the current prognostic staging system. JACC Cardiovasc Imaging 2017;10:398-407.Google Scholar
  148. 148.
    Bodez D, Ternacle J, Guellich A, Galat A, Lim P, Radu C, et al. Prognostic value of right ventricular systolic function in cardiac amyloidosis. Amyloid 2016;23:158-67.Google Scholar
  149. 149.
    Cappelli F, Porciani MC, Bergesio F, Perlini S, Attana P, Moggi Pignone A, et al. Right ventricular function in AL amyloidosis: Characteristics and prognostic implication. Eur Heart J Cardiovasc Imaging 2012;13:416-22.Google Scholar
  150. 150.
    Damy T, Jaccard A, Guellich A, Lavergne D, Galat A, Deux JF, et al. Identification of prognostic markers in transthyretin and AL cardiac amyloidosis. Amyloid 2016;23:194-202.Google Scholar
  151. 151.
    Hu K, Liu D, Nordbeck P, Cikes M, Stork S, Kramer B, et al. Impact of monitoring longitudinal systolic strain changes during serial echocardiography on outcome in patients with AL amyloidosis. Int J Cardiovasc Imaging 2015;31:1401-12.Google Scholar
  152. 152.
    Koyama J, Falk RH. Prognostic significance of strain Doppler imaging in light-chain amyloidosis. JACC Cardiovasc Imaging 2010;3:333-42.Google Scholar
  153. 153.
    Koyama J, Ray-Sequin PA, Falk RH. Prognostic significance of ultrasound myocardial tissue characterization in patients with cardiac amyloidosis. Circulation 2002;106:556-61.Google Scholar
  154. 154.
    Kristen AV, Scherer K, Buss S, aus dem Siepen F, Haufe S, Bauer R, et al. Noninvasive risk stratification of patients with transthyretin amyloidosis. JACC Cardiovasc Imaging 2014;7:502-10.Google Scholar
  155. 155.
    Liu D, Hu K, Herrmann S, Cikes M, Ertl G, Weidemann F, et al. Value of tissue Doppler-derived Tei index and two-dimensional speckle tracking imaging derived longitudinal strain on predicting outcome of patients with light-chain cardiac amyloidosis. Int J Cardiovasc Imaging 2017;33:837-45.PubMedPubMedCentralGoogle Scholar
  156. 156.
    Liu D, Hu K, Stork S, Herrmann S, Kramer B, Cikes M, et al. Predictive value of assessing diastolic strain rate on survival in cardiac amyloidosis patients with preserved ejection fraction. PloS ONE 2014;9:e115910.PubMedPubMedCentralGoogle Scholar
  157. 157.
    Migrino RQ, Harmann L, Christenson R, Hari P. Clinical and imaging predictors of 1-year and long-term mortality in light chain (AL) amyloidosis: A 5-year follow-up study. Heart Vessel 2014;29:793-800.Google Scholar
  158. 158.
    Mohty D, Petitalot V, Magne J, Fadel BM, Boulogne C, Rouabhia D, et al. Left atrial function in patients with light chain amyloidosis: A transthoracic 3D speckle tracking imaging study. J Cardiol 2018;71:419-27.Google Scholar
  159. 159.
    Mohty D, Pibarot P, Dumesnil JG, Darodes N, Lavergne D, Echahidi N, et al. Left atrial size is an independent predictor of overall survival in patients with primary systemic amyloidosis. Arch Cardiovasc Dis 2011;104:611-8.Google Scholar
  160. 160.
    Mohty D, Pradel S, Magne J, Fadel B, Boulogne C, Petitalot V, et al. Prevalence and prognostic impact of left-sided valve thickening in systemic light-chain amyloidosis. Clin Res Cardiol 2017;106:331-40.PubMedPubMedCentralGoogle Scholar
  161. 161.
    Ochs MM, Riffel J, Kristen AV, Hegenbart U, Schonland S, Hardt SE, et al. Anterior aortic plane systolic excursion: A novel indicator of transplant-free survival in systemic light-chain amyloidosis. J Am Soc Echocardiogr 2016;29:1188-96.PubMedPubMedCentralGoogle Scholar
  162. 162.
    Riffel JH, Mereles D, Emami M, Korosoglou G, Kristen AV, Aurich M, et al. Prognostic significance of semiautomatic quantification of left ventricular long axis shortening in systemic light-chain amyloidosis. Amyloid 2015;22:45-53.PubMedPubMedCentralGoogle Scholar
  163. 163.
    Senapati A, Sperry BW, Grodin JL, Kusunose K, Thavendiranathan P, Jaber W, et al. Prognostic implication of relative regional strain ratio in cardiac amyloidosis. Heart 2016;102:748-54.PubMedPubMedCentralGoogle Scholar
  164. 164.
    Siepen FAD, Bauer R, Voss A, Hein S, Aurich M, Riffel J, et al. Predictors of survival stratification in patients with wild-type cardiac amyloidosis. Clin Res Cardiol 2018;107:158-69.Google Scholar
  165. 165.
    Tei C, Dujardin KS, Hodge DO, Kyle RA, Tajik AJ, Seward JB. Doppler index combining systolic and diastolic myocardial performance: Clinical value in cardiac amyloidosis. J Am Coll Cardiol 1996;28:658-64.Google Scholar
  166. 166.
    Kwong RY, Jerosch-Herold M. CMR and amyloid cardiomyopathy: Are we getting closer to the biology? JACC Cardiovasc Imaging 2014;7:166-8.Google Scholar
  167. 167.
    Mekinian A, Lions C, Leleu X, Duhamel A, Lamblin N, Coiteux V, et al. Prognosis assessment of cardiac involvement in systemic AL amyloidosis by magnetic resonance imaging. Am J Med 2010;123:864-8.Google Scholar
  168. 168.
    Kellman P, Arai AE, McVeigh ER, Aletras AH. Phase-sensitive inversion recovery for detecting myocardial infarction using gadolinium-delayed hyperenhancement. Magn Reson Med 2002;47:372-83.PubMedPubMedCentralGoogle Scholar
  169. 169.
    Fontana M, Treibel TA, Martinez-Naharro A, Rosmini S, Kwong RY, Gillmore JD, et al. A case report in cardiovascular magnetic resonance: The contrast agent matters in amyloid. BMC Med Imaging 2017;17:3.PubMedPubMedCentralGoogle Scholar
  170. 170.
    Raina S, Lensing SY, Nairooz RS, Pothineni NV, Hakeem A, Bhatti S, et al. Prognostic value of late gadolinium enhancement CMR in systemic amyloidosis. JACC Cardiovasc Imaging 2016;9:1267-77.Google Scholar
  171. 171.
    Banypersad SM, Fontana M, Maestrini V, Sado DM, Captur G, Petrie A, et al. T1 mapping and survival in systemic light-chain amyloidosis. Eur Heart J 2015;36:244-51.Google Scholar
  172. 172.
    Martinez-Naharro A, Treibel TA, Abdel-Gadir A, Bulluck H, Zumbo G, Knight DS, et al. Magnetic resonance in transthyretin cardiac amyloidosis. J Am Coll Cardiol 2017;70:466-77.Google Scholar
  173. 173.
    Castaño A, Haq M, Narotsky DL, Goldsmith J, Weinberg RL, Morgenstern R, et al. Multicenter study of planar technetium 99m pyrophosphate cardiac imaging. JAMA Cardiol 2016;1:880-9. Scholar
  174. 174.
    Kristen AV, Haufe S, Schonland SO, Hegenbart U, Schnabel PA, Rocken C, et al. Skeletal scintigraphy indicates disease severity of cardiac involvement in patients with senile systemic amyloidosis. Int J Cardiol 2013;164:179-84.Google Scholar
  175. 175.
    Vranian MN, Sperry BW, Hanna M, Hachamovitch R, Ikram A, Brunken RC, et al. Technetium pyrophosphate uptake in transthyretin cardiac amyloidosis: Associations with echocardiographic disease severity and outcomes. J Nucl Cardiol 2017. Scholar
  176. 176.
    Sperry BW, Tamarappoo BK, Oldan JD, Javed O, Culver DA, Brunken R, et al. Prognostic impact of extent, severity, and heterogeneity of abnormalities on (18)F-FDG PET scans for suspected cardiac sarcoidosis. JACC Cardiovasc Imaging 2018;11:336-45. Scholar
  177. 177.
    Merlini G, Lousada I, Ando Y, Dispenzieri A, Gertz MA, Grogan M, et al. Rationale, application and clinical qualification for NT-proBNP as a surrogate end point in pivotal clinical trials in patients with AL amyloidosis. Leukemia 2016;30:1979-86.PubMedPubMedCentralGoogle Scholar
  178. 178.
    Fitzgerald BT, Bashford J, Newbigin K, Scalia GM. Regression of cardiac amyloidosis following stem cell transplantation: A comparison between echocardiography and cardiac magnetic resonance imaging in long-term survivors. Int J Cardiol Heart Vasc 2017;14:53-7.PubMedPubMedCentralGoogle Scholar
  179. 179.
    Dubrey SW, Burke MM, Khaghani A, Hawkins PN, Yacoub MH, Banner NR. Long term results of heart transplantation in patients with amyloid heart disease. Heart 2001;85:202-7.PubMedPubMedCentralGoogle Scholar
  180. 180.
    Liepnieks JJ, Benson MD. Progression of cardiac amyloid deposition in hereditary transthyretin amyloidosis patients after liver transplantation. Amyloid 2007;14:277-82.Google Scholar
  181. 181.
    Okamoto S, Zhao Y, Lindqvist P, Backman C, Ericzon BG, Wijayatunga P, et al. Development of cardiomyopathy after liver transplantation in Swedish hereditary transthyretin amyloidosis (ATTR) patients. Amyloid 2011;18:200-5.Google Scholar
  182. 182.
    Olofsson BO, Backman C, Karp K, Suhr OB. Progression of cardiomyopathy after liver transplantation in patients with familial amyloidotic polyneuropathy, Portuguese type. Transplantation 2002;73:745-51.Google Scholar
  183. 183.
    Comenzo RL, Vosburgh E, Falk RH, Sanchorawala V, Reisinger J, Dubrey S, et al. Dose-intensive melphalan with blood stem-cell support for the treatment of AL (amyloid light-chain) amyloidosis: Survival and responses in 25 patients. Blood 1998;91:3662-70.Google Scholar
  184. 184.
    Patel MR, White RD, Abbara S, Bluemke DA, Herfkens RJ, Picard M, et al. 2013 ACCF/ACR/ASE/ASNC/SCCT/SCMR appropriate utilization of cardiovascular imaging in heart failure: A joint report of the American College of Radiology Appropriateness Criteria Committee and the American College of Cardiology Foundation Appropriate Use Criteria Task Force. J Am Coll Cardiol 2013;61:2207-31.Google Scholar
  185. 185.
    Castaño A, DeLuca A, Weinberg R, Pozniakoff T, Blaner WS, Pirmohamed A, et al. Serial scanning with technetium pyrophosphate ((99m)Tc-PYP) in advanced ATTR cardiac amyloidosis. J Nucl Cardiol 2016;23:1355--63.Google Scholar
  186. 186.
    Azevedo Coutinho MDC, Cortez-Dias N, Cantinho G, Conceicao I, Guimaraes T, Lima da Silva G, et al. Progression of myocardial sympathetic denervation assessed by (123)I-MIBG imaging in familial amyloid polyneuropathy and the effect of liver transplantation. Rev Port Cardiol 2017;36:333-40.Google Scholar
  187. 187.
    Lin G, Dispenzieri A, Kyle R, Grogan M, Brady PA. Implantable cardioverter defibrillators in patients with cardiac amyloidosis. J Cardiovasc Electrophysiol 2013;24:793-8.Google Scholar
  188. 188.
    Varr BC, Zarafshar S, Coakley T, Liedtke M, Lafayette RA, Arai S, et al. Implantable cardioverter-defibrillator placement in patients with cardiac amyloidosis. Heart Rhythm 2014;11:158-62.Google Scholar
  189. 189.
    Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging 2015;16:233-70.Google Scholar
  190. 190.
    Rudski LG, Lai WW, Afilalo J, Hua L, Handschumacher MD, Chandrasekaran K, et al. Guidelines for the echocardiographic assessment of the right heart in adults: A report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr 2010;23:685-713 (quiz 86-8).Google Scholar
  191. 191.
    Cianciulli TF, Saccheri MC, Lax JA, Bermann AM, Ferreiro DE. Two-dimensional speckle tracking echocardiography for the assessment of atrial function. World J Cardiol 2010;2:163-70.PubMedPubMedCentralGoogle Scholar
  192. 192.
    Kowallick JT, Lotz J, Hasenfuss G, Schuster A. Left atrial physiology and pathophysiology: Role of deformation imaging. World J Cardiol 2015;7:299-305.PubMedPubMedCentralGoogle Scholar
  193. 193.
    Mor-Avi V, Lang RM, Badano LP, Belohlavek M, Cardim NM, Derumeaux G, et al. Current and evolving echocardiographic techniques for the quantitative evaluation of cardiac mechanics: ASE/EAE consensus statement on methodology and indications endorsed by the Japanese Society of Echocardiography. J Am Soc Echocardiogr 2011;24:277-313.Google Scholar
  194. 194.
    Voigt JU, Pedrizzetti G, Lysyansky P, Marwick TH, Houle H, Baumann R, et al. Definitions for a common standard for 2D speckle tracking echocardiography: Consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging. J Am Soc Echocardiogr 2015;28:183-93.Google Scholar
  195. 195.
    Kramer CM, Barkhausen J, Flamm SD, Kim RJ, Nagel E, Society for Cardiovascular Magnetic Resonance Board of Trustees Task Force on Standardized P. Standardized cardiovascular magnetic resonance (CMR) protocols 2013 update. J Cardiovasc Magn Reson 2013;15:91.PubMedPubMedCentralGoogle Scholar
  196. 196.
    Moon JC, Messroghli DR, Kellman P, Piechnik SK, Robson MD, Ugander M, et al. Myocardial T1 mapping and extracellular volume quantification: A Society for Cardiovascular Magnetic Resonance (SCMR) and CMR Working Group of the European Society of Cardiology consensus statement. J Cardiovasc Magn Reson 2013;15:92.PubMedPubMedCentralGoogle Scholar
  197. 197.
    Zumbo G, Barton SV, Thompson D, Sun M, Abdel-Gadir A, Treibel TA, et al. Extracellular volume with bolus-only technique in amyloidosis patients: Diagnostic accuracy, correlation with other clinical cardiac measures, and ability to track changes in amyloid load over time. J Magn Reson Imaging 2018;47:1677-84.Google Scholar
  198. 198.
    Neilan TG, Coelho-Filho OR, Shah RV, Abbasi SA, Heydari B, Watanabe E, et al. Myocardial extracellular volume fraction from T1 measurements in healthy volunteers and mice: Relationship to aging and cardiac dimensions. JACC Cardiovasc Imaging 2013;6:672-83.PubMedPubMedCentralGoogle Scholar
  199. 199.
    Flett AS, Hayward MP, Ashworth MT, Hansen MS, Taylor AM, Elliott PM, et al. Equilibrium contrast cardiovascular magnetic resonance for the measurement of diffuse myocardial fibrosis: Preliminary validation in humans. Circulation 2010;122:138-44.Google Scholar
  200. 200.
    Treibel TA, Fontana M, Maestrini V, Castelletti S, Rosmini S, Simpson J, et al. Automatic measurement of the myocardial interstitium: Synthetic extracellular volume quantification without hematocrit sampling. JACC Cardiovasc Imaging 2016;9:54-63.Google Scholar
  201. 201.
    Li R, Yang ZG, Wen LY, Liu X, Xu HY, Zhang Q, et al. Regional myocardial microvascular dysfunction in cardiac amyloid light-chain amyloidosis: Assessment with 3T cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2016;18:16.PubMedPubMedCentralGoogle Scholar
  202. 202.
    Flotats A, Carrio I, Agostini D, Le Guludec D, Marcassa C, Schafers M, et al. Proposal for standardization of 123I-metaiodobenzylguanidine (MIBG) cardiac sympathetic imaging by the EANM Cardiovascular Committee and the European Council of Nuclear Cardiology. Eur J Nucl Med Mol Imaging 2010;37:1802-12.Google Scholar
  203. 203.
    Inoue Y, Abe Y, Kikuchi K, Matsunaga K, Masuda R, Nishiyama K. Correction of collimator-dependent differences in the heart-to-mediastinum ratio in (123)I-metaiodobenzylguanidine cardiac sympathetic imaging: Determination of conversion equations using point-source imaging. J Nucl Cardiol 2017;24:1725-36.Google Scholar
  204. 204.
    Nakajima K, Matsumoto N, Kasai T, Matsuo S, Kiso K, Okuda K. Normal values and standardization of parameters in nuclear cardiology: Japanese Society of Nuclear Medicine working group database. Ann Nucl Med 2016;30:188-99. Scholar
  205. 205.
    Kawel N, Turkbey EB, Carr JJ, Eng J, Gomes AS, Hundley WG, et al. Normal left ventricular myocardial thickness for middle-aged and older subjects with steady-state free precession cardiac magnetic resonance: The multi-ethnic study of atherosclerosis. Circ Cardiovasc Imaging 2012;5:500-8. Scholar
  206. 206.
    Kawel-Boehm N, Maceira A, Valsangiacomo-Buechel ER, Vogel-Claussen J, Turkbey EB, Williams R, et al. Normal values for cardiovascular magnetic resonance in adults and children. J Cardiovasc Magn Reson 2015;17:29.PubMedPubMedCentralGoogle Scholar
  207. 207.
    Dorbala S, Bokhari S, Miller E, Bullock-Palmer R, Soman P, Thompson R. ASNC Practice Points: 99mTechnetium-pyrophosphate imaging for transthyretin cardiac amyloidosis. Released February 27, 2019.
  208. 208.
    Kristen AV, Perz JB, Schonland SO, Hansen A, Hegenbart U, Sack FU, et al. Rapid progression of left ventricular wall thickness predicts mortality in cardiac light-chain amyloidosis. J Heart Lung Transplant 2007;26:1313-9.Google Scholar
  209. 209.
    Maceira AM, Prasad SK, Hawkins PN, Roughton M, Pennell DJ. Cardiovascular magnetic resonance and prognosis in cardiac amyloidosis. J Cardiovasc Magn Reson 2008;10:54.PubMedPubMedCentralGoogle Scholar
  210. 210.
    Migrino RQ, Christenson R, Szabo A, Bright M, Truran S, Hari P. Prognostic implication of late gadolinium enhancement on cardiac MRI in light chain (AL) amyloidosis on long term follow up. BMC Med Phys 2009;9:5.PubMedPubMedCentralGoogle Scholar
  211. 211.
    Lin L, Li X, Feng J, Shen KN, Tian Z, Sun J, et al. The prognostic value of T1 mapping and late gadolinium enhancement cardiovascular magnetic resonance imaging in patients with light chain amyloidosis. J Cardiovasc Magn Reson 2018;20:2.PubMedPubMedCentralGoogle Scholar
  212. 212.
    Lee VW, Caldarone AG, Falk RH, Rubinow A, Cohen AS. Amyloidosis of heart and liver: comparison of Tc-99m pyrophosphate and Tc-99m methylene diphosphonate for detection. Radiology 1983;148:239-42.Google Scholar
  213. 213.
    Eriksson P, Backman C, Bjerle P, Eriksson A, Holm S, Olofsson BO. Non-invasive assessment of the presence and severity of cardiac amyloidosis. A study in familial amyloidosis with polyneuropathy by cross sectional echocardiography and technetium-99m pyrophosphate scintigraphy. Br Heart J 1984;52:321-6.PubMedPubMedCentralGoogle Scholar
  214. 214.
    Leinonen H, Totterman KJ, Korppi-Tommola T, Korhola O. Negative myocardial technetium-99m pyrophosphate scintigraphy in amyloid heart disease associated with type AA systemic amyloidosis. Am J Cardiol 1984;53:380-1.Google Scholar
  215. 215.
    Falk RH, Lee VW, Rubinow A, Skinner M, Cohen AS. Cardiac technetium-99m pyrophosphate scintigraphy in familial amyloidosis. Am Heart J 1984;54:1150-1.Google Scholar
  216. 216.
    Hongo M, Hirayama J, Fujii T, Yamada H, Okubo S, Kusama S, et al. Early identification of amyloid heart disease by technetium-99m-pyrophosphate scintigraphy: A study with familial amyloid polyneuropathy. Am Heart J 1987;113:654-62.Google Scholar
  217. 217.
    Goldstein SA, Lindsay J Jr, Chandeysson PL, Nolan NG. Usefulness of technetium pyrophosphate scintigraphy in demonstrating cardiac amyloidosis in persons aged 85 years and older. Am J Cardiol 1989;63:752-3.Google Scholar
  218. 218.
    Fournier C, Grimon G, Rinaldi JP, et al. Usefulness of technetium-99m pyrophosphate myocardial scintigraphy in amyloid polyneuropathy and correlation with echocardiography. Am J Cardiol 1993;72:854-7.Google Scholar
  219. 219.
    Puille M, Altland K, Linke RP, Steen-Müller MK, Kiett R, Steiner D, et al. 99mTc-DPD scintigraphy in transthyretin-related familial amyloidotic polyneuropathy. Eur J Nucl Med Mol Imaging 2002;29:376-9.Google Scholar
  220. 220.
    Rapezzi C, Quarta CC, Guidalotti PL, Longhi S, Pettinato C, Leone A, et al. Usefulness and limitations of 99mTc-3,3-diphosphono-1,2-propanodicarboxylic acid scintigraphy in the aetiological diagnosis of amyloidotic cardiomyopathy. Eur J Nucl Med Mol Imaging 2011;38:470-8.PubMedPubMedCentralGoogle Scholar
  221. 221.
    de Haro-del Moral FJ, Sanchez-Lajusticia A, Gomez-Bueno M, Garcia-Pavia P, Salas-Anton C, Segovia-Cubero J. Role of cardiac scintigraphy with 99mTc-DPD in the differentiation of cardiac amyloidosis subtype. Rev Esp Cardiol (Engl Ed) 2012;65:440-6.Google Scholar
  222. 222.
    Ferreira SG, Rocha AM, Moreira do Nascimento OJ, Mesquita CT. Role of 99mTc-DPD scintigraphy on discrimination of familial cardiac amyloidosis. Int J Cardiol 2016;203:885-7.PubMedPubMedCentralGoogle Scholar
  223. 223.
    Pilebro B, Suhr OB, Naslund U, Westermark P, Lindqvist P, Sundstrom T. (99m)Tc-DPD uptake reflects amyloid fibril composition in hereditary transthyretin amyloidosis. Ups J Med Sci 2016;121:17-24.PubMedPubMedCentralGoogle Scholar
  224. 224.
    Abulizi M, Cottereau AS, Guellich A, Vandeventer S, Galat A, Van Der Gucht A, et al. Early-phase myocardial uptake intensity of 99mTc-HMDP vs 99mTc-DPD in patients with hereditary transthyretin-related cardiac amyloidosis. J Nucl Cardiol 2018;25:217-22. Scholar
  225. 225.
    Galat A, Van der Gucht A, Guellich A, Bodez D, Cottereau AS, Guendouz S, et al. Early phase 99Tc-HMDP scintigraphy for the diagnosis and typing of cardiac amyloidosis. JACC Cardiovasc Imaging 2017;10:601-3. Scholar
  226. 226.
    Van Der Gucht A, Cottereau AS, Abulizi M, Guellich A, Blanc-Durand P, Israel JM, et al. Apical sparing pattern of left ventricular myocardial (99m)Tc-HMDP uptake in patients with transthyretin cardiac amyloidosis. J Nucl Cardiol 2018;25:2072-9. Scholar
  227. 227.
    Moore PT, Burrage MK, Mackenzie E, Law WP, Korczyk D, Mollee P. The utility of (99m)Tc-DPD scintigraphy in the diagnosis of cardiac amyloidosis: An Australian experience. Heart Lung Circ 2017;26:1183-90.Google Scholar
  228. 228.
    Longhi S, Guidalotti PL, Quarta CC, Gagliardi C, Milandri A, Lorenzini M, et al. Identification of TTR-related subclinical amyloidosis with 99mTc-DPD scintigraphy. JACC Cardiovasc Imaging 2014;7:531-2.Google Scholar
  229. 229.
    Galat A, Guellich A, Bodez D, Slama M, Dijos M, Zeitoun DM, et al. Aortic stenosis and transthyretin cardiac amyloidosis: the chicken or the egg? Eur Heart J 2016;37:3525-31. Scholar
  230. 230.
    Sperry BW, Vranian MN, Tower-Rader A, Hachamovitch R, Hanna M, Brunken R, et al. Regional variation in technetium pyrophosphate uptake in transthyretin cardiac amyloidosis and impact on mortality. JACC Cardiovasc Imaging 2018;11:234-42. Scholar
  231. 231.
    Delahaye N, Le Guludec D, Dinanian S, Delforge J, Slama MS, Sarda L, et al. Myocardial muscarinic receptor upregulation and normal response to isoproterenol in denervated hearts by familial amyloid polyneuropathy. Circulation 2001;104:2911-26.Google Scholar
  232. 232.
    Coutinho CA, Conceicao I, Almeida A, Cantinho G, Sargento L, Vagueiro MC. Early detection of sympathetic myocardial denervation in patients with familial amyloid polyneuropathy type I. Rev Port Cardiol 2004;23:201-11.Google Scholar
  233. 233.
    Algalarrondo V, Eliahou L, Thierry I, Bouzeman A, Dasoveanu M, Sebag C, et al. Circadian rhythm of blood pressure reflects the severity of cardiac impairment in familial amyloid polyneuropathy. Arch Cardiovasc Dis 2012;105:281-90.Google Scholar
  234. 234.
    Takahashi R, Ono K, Shibata S, Nakamura K, Komatsu J, Ikeda Y, et al. Efficacy of diflunisal on autonomic dysfunction of late-onset familial amyloid polyneuropathy (TTR Val30Met) in a Japanese endemic area. J Neurol Sci 2014;345:231-5. Scholar
  235. 235.
    Henzlova MJ, Duvall WL, Einstein AJ, Travin MI, Verberne HJ. ASNC imaging guidelines for SPECT nuclear cardiology procedures: Stress, protocols, and tracers. J Nucl Cardiol 2016;23:606-39.PubMedPubMedCentralGoogle Scholar

Copyright information

© American Society of Nuclear Cardiology, Heart Failure Society of America, and American Heart Association 2019

Authors and Affiliations

  • Sharmila Dorbala
    • 1
    Email author
  • Yukio Ando
    • 2
  • Sabahat Bokhari
    • 3
  • Angela Dispenzieri
    • 4
  • Rodney H. Falk
    • 1
  • Victor A. Ferrari
    • 5
  • Marianna Fontana
    • 6
  • Olivier Gheysens
    • 7
  • Julian D. Gillmore
    • 6
  • Andor W. J. M. Glaudemans
    • 8
  • Mazen A. Hanna
    • 9
  • Bouke P. C. Hazenberg
    • 10
  • Arnt V. Kristen
    • 11
  • Raymond Y. Kwong
    • 1
  • Mathew S. Maurer
    • 3
  • Giampaolo Merlini
    • 12
    • 13
  • Edward J. Miller
    • 14
  • James C. Moon
    • 6
  • Venkatesh L. Murthy
    • 15
  • C. Cristina Quarta
    • 6
  • Claudio Rapezzi
    • 16
  • Frederick L. Ruberg
    • 17
  • Sanjiv J. Shah
    • 18
  • Riemer H. J. A. Slart
    • 8
  • Hein J. Verberne
    • 19
  • Jamieson M. Bourque
    • 20
  1. 1.Cardiac Amyloidosis Program, Cardiovascular Imaging Program, Departments of Radiology and MedicineHarvard Medical School, Brigham and Women’s HospitalBostonUSA
  2. 2.Department of Neurology, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
  3. 3.Columbia University Medical Center/New York Presbyterian HospitalColumbia UniversityNew YorkUSA
  4. 4.Division of Hematology, Division of Cardiovascular Diseases, and Department of Radiology, Division of Nuclear Medicine, Department of MedicineMayo ClinicRochesterUSA
  5. 5.Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaUSA
  6. 6.Division of Medicine, National Amyloidosis CentreUniversity College LondonLondonUK
  7. 7.Nuclear Medicine and Molecular ImagingUniversity Hospitals LeuvenLeuvenBelgium
  8. 8.Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
  9. 9.Department of Cardiovascular MedicineCleveland ClinicClevelandUSA
  10. 10.Department of Rheumatology & Clinical Immunology, University Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
  11. 11.Department of CardiologyUniversity of HeidelbergHeidelbergGermany
  12. 12.Amyloidosis Research and Treatment CenterFoundation Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San MatteoPaviaItaly
  13. 13.Department of Molecular MedicineUniversity of PaviaPaviaItaly
  14. 14.Cardiovascular MedicineYale University School of MedicineNew HavenUSA
  15. 15.Frankel Cardiovascular Center, Michigan MedicineAnn ArborUSA
  16. 16.Cardiology Unit, Department of Experimental, Diagnostic and Specialty MedicineAlma Mater-University of BolognaBolognaItaly
  17. 17.Amyloidosis Center and Section of Cardiovascular Medicine, Department of Medicine, Boston University School of MedicineBoston Medical CenterBostonUSA
  18. 18.Feinberg School of MedicineNorthwestern UniversityChicagoUSA
  19. 19.Department of Radiology and Nuclear Medicine, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
  20. 20.Departments of Medicine and Radiology, Cardiovascular Imaging CenterUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations