Advertisement

Recommendations for 18F-fluorodeoxyglucose positron emission tomography imaging for diagnosis of cardiac sarcoidosis—2018 update: Japanese Society of Nuclear Cardiology recommendations

  • Shinichiro Kumita
  • Keiichiro YoshinagaEmail author
  • Masao Miyagawa
  • Mitsuru Momose
  • Keisuke Kiso
  • Tokuo Kasai
  • Masanao Naya
  • Committee for diagnosis of cardiac sarcoidosis using 18F-FDG PET, Japanese Society of Nuclear Cardiology
SPECIAL REVIEW ARTICLE: JSNC RECOMMENDATION
  • 14 Downloads

Committee for diagnosis of cardiac sarcoidosis using 18F-FDG PET, Japanese Society of Nuclear Cardiology

Shinichiro Kumita, MD, PhD

Keiichiro Yoshinaga, MD, PhD, FACC, FASNC

Masao Miyagawa, MD, PhD

Mitsuru Momose, MD, PhD

Keisuke Kiso, MD, PhD

Tokuo Kasai, MD, PhD

Masanao Naya, MD, PhD

*American College of Cardiology Representative. American Society of Echocardiography Representative. Society for Cardiovascular Angiography and Interventions Representative. §Society of Cardiovascular Computed Tomography Representative. American Society of Nuclear Cardiology Representative

Notes

Acknowledgments

The authors thank Ms. Kumiko Toshimitsu for providing a sample menu. This manuscript has been reviewed by a North American English-language professional editor, Ms. Holly Beanlands. The authors also thank Ms. Holly Beanlands for critical reading of the manuscript.

Disclosure

None.

References

  1. 1.
    Iannuzzi MC, Rybicki BA, Teirstein AS. Sarcoidosis. N Engl J Med 2007;357:2153-65.CrossRefGoogle Scholar
  2. 2.
    O’Regan A, Berman JS. Sarcoidosis. Ann Intern Med 2012;156:ITC5-1, ITC5-2, ITC5-3, ITC5-4, ITC5-5, ITC5-6, ITC5-7, ITC5-8, ITC5-9, ITC5-10, ITC5-11, ITC5-12, ITC5-13, ITC5-14, ITC5-15; quiz ITC5-16.Google Scholar
  3. 3.
    Bargagli E, Prasse A. Sarcoidosis: a review for the internist. Intern Emerg Med 2018;13:325-31.Google Scholar
  4. 4.
    Silverman KJ, Hutchins GM, Bulkley BH. Cardiac sarcoid: a clinicopathologic study of 84 unselected patients with systemic sarcoidosis. Circulation 1978;58:1204-11.CrossRefGoogle Scholar
  5. 5.
    Hiraga HHM, Iwai K. Guidelines for diagnosis of cardiac sarcoidosis: study report on diffuse pulmonary disease (in Japanese). Tokyo: The Japanese Ministry of Health and Welfare; 1993. p. 2.Google Scholar
  6. 6.
    Diagnostic standard and guidelines for sarcoidosis. Jpn J Sarcoidosis Granulomatous Disord [in Japanese] 2007;27:89-102.Google Scholar
  7. 7.
    Iwai K, Sekiguti M, Hosoda Y, et al. Racial difference in cardiac sarcoidosis incidence observed at autopsy. Sarcoidosis 1994;11:26-31.Google Scholar
  8. 8.
    Ohira H, Yoshinaga K, Manabe O, et al. Clinical application of 18F-fluorodeoxyglucose PET and LGE CMR in cardiac sarcoidosis. Ann Nucl Cardiol 2017;3:125-30.CrossRefGoogle Scholar
  9. 9.
    Patel AR, Kramer CM. Role of cardiac magnetic resonance in the diagnosis and prognosis of nonischemic cardiomyopathy. JACC Cardiovasc Imaging 2017;10:1180-93.CrossRefGoogle Scholar
  10. 10.
    Uemura A, Morimoto S, Hiramitsu S, Kato Y, Ito T, Hishida H. Histologic diagnostic rate of cardiac sarcoidosis: evaluation of endomyocardial biopsies. Am Heart J 1999;138:299-302.CrossRefGoogle Scholar
  11. 11.
    Cooper LT, Baughman KL, Feldman AM, et al. The role of endomyocardial biopsy in the management of cardiovascular disease: A scientific statement from the American Heart Association, the American College of Cardiology, and the European Society of Cardiology Endorsed by the Heart Failure Society of America and the Heart Failure Association of the European Society of Cardiology. Eur Heart J 2007;28:3076-93.CrossRefGoogle Scholar
  12. 12.
    Terasaki F, Yoshinaga K. New guidelines for diagnosis of cardiac sarcoidosis in Japan. Ann Nucl Cardiol 2017;3:42-5.CrossRefGoogle Scholar
  13. 13.
    Kandolin R, Lehtonen J, Airaksinen J, et al. Cardiac sarcoidosis: epidemiology, characteristics, and outcome over 25 years in a nationwide study. Circulation 2015;131:624-32.CrossRefGoogle Scholar
  14. 14.
    Okada DR, Bravo PE, Vita T, et al. Isolated cardiac sarcoidosis: A focused review of an under-recognized entity. J Nucl Cardiol 2018;25:1136-46.CrossRefGoogle Scholar
  15. 15.
    Nishiyama Y, Yamamoto Y, Fukunaga K, et al. Comparative evaluation of 18F-FDG PET and 67 Ga scintigraphy in patients with sarcoidosis. J Nucl Med 2006;47:1571-6.Google Scholar
  16. 16.
    Yoshinaga K, Maruno H, Chikamori T. Updated Japanese Ministry of Health, Labour and Welfare Reimbursement Policy for Cardiac Positron Emission Tomography and Coronary Intervention. Ann Nucl Cardiol 2018;4:42-5.CrossRefGoogle Scholar
  17. 17.
    Yoshinaga K, Tamaki N. Current status of nuclear cardiology in Japan: Ongoing efforts to improve clinical standards and to establish evidence. J Nucl Cardiol 2015;22:690-9.CrossRefGoogle Scholar
  18. 18.
    Ishida Y, Yoshinaga K, Miyagawa M, et al. Recommendations for (18)F-fluorodeoxyglucose positron emission tomography imaging for cardiac sarcoidosis: Japanese Society of Nuclear Cardiology recommendations. Ann Nucl Med 2014;28:393-403.CrossRefGoogle Scholar
  19. 19.
    Chareonthaitawee P, Beanlands RS, Chen W, et al. Joint SNMMI-ASNC expert consensus document on the role of (18)F-FDG PET/CT in cardiac sarcoid detection and therapy monitoring. J Nucl Cardiol 2017;24:1741-58.CrossRefGoogle Scholar
  20. 20.
    Yoshinaga K, Miyagawa M, Kiso K, Ishida Y. Japanese Guidelines for Cardiac Sarcoidosis. Ann Nucl Cardiol 2017;3:121-4.CrossRefGoogle Scholar
  21. 21.
    Tamaki N, Manabe O, Yoshinaga K. Roles of 18F-FDG PET in diagnosis and management of cardiac sarcoidosis—from the continuing medical education session at the 63rd SNMMI meeting, June 2016. Ann Nucl Cardiol 2017;3:110-2.CrossRefGoogle Scholar
  22. 22.
    Yoshinaga K, Tamaki N. Imaging myocardial metabolism. Curr Opin Biotechnol 2007;18:52-9.CrossRefGoogle Scholar
  23. 23.
    Wisneski JA, Gertz EW, Neese RA, Mayr M. Myocardial metabolism of free fatty acids Studies with 14C-labeled substrates in humans. J Clin Investig 1987;79:359-66.CrossRefGoogle Scholar
  24. 24.
    Miyagawa M, Tashiro R, Watanabe E, et al. Optimal patient preparation for detection and assessment of cardiac sarcoidosis by FDG-PET. Ann Nucl Cardiol 2017;3:113-6.CrossRefGoogle Scholar
  25. 25.
    Ohira H, Tsujino I, Yoshinaga K. (1)(8)F-Fluoro-2-deoxyglucose positron emission tomography in cardiac sarcoidosis. Eur J Nucl Med Mol Imaging 2011;38:1773-83.CrossRefGoogle Scholar
  26. 26.
    Boellaard R, O’Doherty MJ, Weber WA, et al. FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0. Eur J Nucl Med Mol Imaging 2010;37:181-200.CrossRefGoogle Scholar
  27. 27.
    Youssef G, Leung E, Mylonas I, et al. The use of 18F-FDG PET in the diagnosis of cardiac sarcoidosis: a systematic review and metaanalysis including the Ontario experience. J Nucl Med 2012;53:241-8.CrossRefGoogle Scholar
  28. 28.
    Langah R, Spicer K, Gebregziabher M, Gordon L. Effectiveness of prolonged fasting 18f-FDG PET-CT in the detection of cardiac sarcoidosis. J Nucl Cardiol 2009;16:801-10.CrossRefGoogle Scholar
  29. 29.
    Morooka M, Moroi M, Uno K, et al. Long fasting is effective in inhibiting physiological myocardial 18F-FDG uptake and for evaluating active lesions of cardiac sarcoidosis. EJNMMI Res 2014;4:1.CrossRefGoogle Scholar
  30. 30.
    Manabe O, Kroenke M, Aikawa T, et al. Volume-based glucose metabolic analysis of FDG PET/CT: The optimum threshold and conditions to suppress physiological myocardial uptake. J Nucl Cardiol 2017;26:909-18.CrossRefGoogle Scholar
  31. 31.
    Manabe O, Yoshinaga K, Ohira H, et al. The effects of 18-h fasting with low-carbohydrate diet preparation on suppressed physiological myocardial (18)F-fluorodeoxyglucose (FDG) uptake and possible minimal effects of unfractionated heparin use in patients with suspected cardiac involvement sarcoidosis. J Nucl Cardiol 2016;23:244-52.CrossRefGoogle Scholar
  32. 32.
    Delbeke D, Coleman RE, Guiberteau MJ, et al. Procedure guideline for SPECT/CT imaging 1.0. J Nucl Med 2006;47:1227-34.Google Scholar
  33. 33.
    Lum DP, Wandell S, Ko J, Coel MN. Reduction of myocardial 2-deoxy-2-[18F]fluoro-d-glucose uptake artifacts in positron emission tomography using dietary carbohydrate restriction. Mol Imaging Biol 2002;4:232-7.CrossRefGoogle Scholar
  34. 34.
    Cheng VY, Slomka PJ, Ahlen M, Thomson LE, Waxman AD, Berman DS. Impact of carbohydrate restriction with and without fatty acid loading on myocardial 18F-FDG uptake during PET: A randomized controlled trial. J Nucl Cardiol 2010;17:286-91.CrossRefGoogle Scholar
  35. 35.
    Kobayashi Y, Kumita S, Fukushima Y, Ishihara K, Suda M, Sakurai M. Significant suppression of myocardial (18)F-fluorodeoxyglucose uptake using 24-h carbohydrate restriction and a low-carbohydrate, high-fat diet. J Cardiol 2013;62:314-9.CrossRefGoogle Scholar
  36. 36.
    Williams G, Kolodny GM. Suppression of myocardial 18F-FDG uptake by preparing patients with a high-fat, low-carbohydrate diet. AJR Am J Roentgenol 2008;190:W151-6.CrossRefGoogle Scholar
  37. 37.
    Yokoyama R, Miyagawa M, Okayama H, et al. Quantitative analysis of myocardial 18F-fluorodeoxyglucose uptake by PET/CT for detection of cardiac sarcoidosis. Int J Cardiol 2015;195:180-7.CrossRefGoogle Scholar
  38. 38.
    Momose M, Fukushima K, Kondo C, et al. Diagnosis and detection of myocardial injury in active cardiac sarcoidosis-significance of myocardial fatty acid metabolism and myocardial perfusion mismatch. Circ J 2015;79:2669-76.CrossRefGoogle Scholar
  39. 39.
    Ohira H, Tsujino I, Sato T, et al. Early detection of cardiac sarcoid lesions with (18)F-fluoro-2-deoxyglucose positron emission tomography. Intern Med 2011;50:1207-9.CrossRefGoogle Scholar
  40. 40.
    Wykrzykowska J, Lehman S, Williams G, et al. Imaging of inflamed and vulnerable plaque in coronary arteries with 18F-FDG PET/CT in patients with suppression of myocardial uptake using a low-carbohydrate, high-fat preparation. J Nucl Med 2009;50:563-8.CrossRefGoogle Scholar
  41. 41.
    Frayn KN. The glucose-fatty acid cycle: a physiological perspective. Biochem Soc Trans 2003;31:1115-9.CrossRefGoogle Scholar
  42. 42.
    Harisankar CN, Mittal BR, Agrawal KL, Abrar ML, Bhattacharya A. Utility of high fat and low carbohydrate diet in suppressing myocardial FDG uptake. J Nucl Cardiol 2011;18:926-36.CrossRefGoogle Scholar
  43. 43.
    Bois JP, Chareonthaitawee P. Patient page-sarcoidosis imaging. J Nucl Cardiol 2017;26:222-6.CrossRefGoogle Scholar
  44. 44.
    Persson E. Lipoprotein lipase, hepatic lipase and plasma lipolytic activity. Effects of heparin and a low molecular weight heparin fragment (Fragmin). Acta Med Scand Supplement 1988;724:1-56.Google Scholar
  45. 45.
    Shulman GI, Rothman DL, Jue T, Stein P, DeFronzo RA, Shulman RG. Quantitation of muscle glycogen synthesis in normal subjects and subjects with non-insulin-dependent diabetes by 13C nuclear magnetic resonance spectroscopy. N Engl J Med 1990;322:223-8.CrossRefGoogle Scholar
  46. 46.
    Nuutila P, Koivisto VA, Knuuti J, et al. Glucose-free fatty acid cycle operates in human heart and skeletal muscle in vivo. J Clin Invest 1992;89:1767-74.CrossRefGoogle Scholar
  47. 47.
    Ishimaru S, Tsujino I, Takei T, et al. Focal uptake on 18F-fluoro-2-deoxyglucose positron emission tomography images indicates cardiac involvement of sarcoidosis. Eur Heart J 2005;26:1538-43.CrossRefGoogle Scholar
  48. 48.
    Ohira H, Tsujino I, Ishimaru S, et al. Myocardial imaging with 18F-fluoro-2-deoxyglucose positron emission tomography and magnetic resonance imaging in sarcoidosis. Eur J Nucl Med Mol Imaging 2008;35:933-41.CrossRefGoogle Scholar
  49. 49.
    Asmal AC, Leary WP, Thandroyen F, Botha J, Wattrus S. A dose-response study of the anticoagulant and lipolytic activities of heparin in normal subjects. Br J Clin Pharmacol 1979;7:531-3.CrossRefGoogle Scholar
  50. 50.
    Scholtens AM, Verberne HJ, Budde RP, Lam MG. Additional heparin preadministration improves cardiac glucose metabolism suppression over low-carbohydrate diet alone in (1)(8)F-FDG PET imaging. J Nucl Med 2016;57:568-73.CrossRefGoogle Scholar
  51. 51.
    Demeure F, Hanin FX, Bol A, et al. A randomized trial on the optimization of 18F-FDG myocardial uptake suppression: Implications for vulnerable coronary plaque imaging. J Nucl Med 2014;55:1629-35.CrossRefGoogle Scholar
  52. 52.
    Bois JP, Chareonthaitawee P. Optimizing radionuclide imaging in the assessment of cardiac sarcoidosis. J Nucl Cardiol 2016;23:253-5.CrossRefGoogle Scholar
  53. 53.
    Jang IK, Hursting MJ. When heparins promote thrombosis: Review of heparin-induced thrombocytopenia. Circulation 2005;111:2671-83.CrossRefGoogle Scholar
  54. 54.
    Martel N, Lee J, Wells PS. Risk for heparin-induced thrombocytopenia with unfractionated and low-molecular-weight heparin thromboprophylaxis: A meta-analysis. Blood 2005;106:2710-5.CrossRefGoogle Scholar
  55. 55.
    Muslimani AA, Ricaurte B, Daw HA. Immune heparin-induced thrombocytopenia resulting from preceding exposure to heparin catheter flushes. Am J Hematol 2007;82:652-5.CrossRefGoogle Scholar
  56. 56.
    Kato S, Takahashi K, Ayabe K, et al. Heparin-induced thrombocytopenia: analysis of risk factors in medical inpatients. Br J Haematol 2011;154:373-7.CrossRefGoogle Scholar
  57. 57.
    Fdg PET. PET/CT Practice guidelines 2012, September 2012 by Japanese Society of Nuclear Medicine. Kaku Igaku 2012;49:391-401.Google Scholar
  58. 58.
    Dilsizian V, Bacharach SL, Beanlands RS, et al. ASNC imaging guidelines/SNMMI procedure standard for positron emission tomography (PET) nuclear cardiology procedures. J Nucl Cardiol 2016;23:1187-226.CrossRefGoogle Scholar
  59. 59.
    Machac J, Bacharach SL, Bateman TM, et al. Positron emission tomography myocardial perfusion and glucose metabolism imaging. J Nucl Cardiol 2006;13:e121-51.CrossRefGoogle Scholar
  60. 60.
    Cerqueira MD, Allman KC, Ficaro EP, et al. Recommendations for reducing radiation exposure in myocardial perfusion imaging. J Nucl Cardiol 2010;17:709-18.CrossRefGoogle Scholar
  61. 61.
    Kudo T. Present status of medical radiation and nuclear cardiology usage in Japan: A Discussion at the American Society of Nuclear Cardiology Joint Symposium. Ann Nucl Cardiol 2018;4:142-8.CrossRefGoogle Scholar
  62. 62.
    Hays MT, Segall GM. A mathematical model for the distribution of fluorodeoxyglucose in humans. J Nucl Med 1999;40:1358-66.Google Scholar
  63. 63.
    Schwaiger M, Ziegler S, Nekolla SG. PET/CT: challenge for nuclear cardiology. J Nucl Med 2005;46:1664-78.Google Scholar
  64. 64.
    DiFilippo FP, Brunken RC. Do implanted pacemaker leads and ICD leads cause metal-related artifact in cardiac PET/CT? J Nucl Med 2005;46:436-43.Google Scholar
  65. 65.
    Ghafarian P, Aghamiri SM, Ay MR, et al. Is metal artefact reduction mandatory in cardiac PET/CT imaging in the presence of pacemaker and implantable cardioverter defibrillator leads? Eur J Nucl Med Mol Imaging 2011;38:252-62.CrossRefGoogle Scholar
  66. 66.
    Tahara N, Tahara A, Nitta Y, et al. Heterogeneous myocardial FDG uptake and the disease activity in cardiac sarcoidosis. JACC Cardiovasc Imaging 2010;3:1219-28.CrossRefGoogle Scholar
  67. 67.
    Okumura W, Iwasaki T, Toyama T, et al. Usefulness of fasting 18F-FDG PET in identification of cardiac sarcoidosis. J Nucl Med 2004;45:1989-98.Google Scholar
  68. 68.
    Yamagishi H, Shirai N, Takagi M, et al. Identification of cardiac sarcoidosis with (13)N-NH(3)/(18)F-FDG PET. J Nucl Med 2003;44:1030-6.Google Scholar
  69. 69.
    Tavora F, Cresswell N, Li L, Ripple M, Solomon C, Burke A. Comparison of necropsy findings in patients with sarcoidosis dying suddenly from cardiac sarcoidosis versus dying suddenly from other causes. Am J Cardiol 2009;104:571-7.CrossRefGoogle Scholar
  70. 70.
    Kandolin R, Lehtonen J, Salmenkivi K, Raisanen-Sokolowski A, Lommi J, Kupari M. Diagnosis, treatment, and outcome of giant-cell myocarditis in the era of combined immunosuppression. Circ Heart Fail 2013;6:15-22.CrossRefGoogle Scholar
  71. 71.
    Birnie DH, Sauer WH, Bogun F, et al. HRS expert consensus statement on the diagnosis and management of arrhythmias associated with cardiac sarcoidosis. Heart Rhythm 2014;11:1305-23.CrossRefGoogle Scholar
  72. 72.
    Banba K, Kusano KF, Nakamura K, et al. Relationship between arrhythmogenesis and disease activity in cardiac sarcoidosis. Heart Rhythm 2007;4:1292-9.CrossRefGoogle Scholar
  73. 73.
    Kandolin R, Lehtonen J, Kupari M. Cardiac sarcoidosis and giant cell myocarditis as causes of atrioventricular block in young and middle-aged adults. Circ Arrhythm Electrophysiol 2011;4:303-9.CrossRefGoogle Scholar
  74. 74.
    Manabe O, Ohira H, Yoshinaga K, et al. Elevated (18)F-fluorodeoxyglucose uptake in the interventricular septum is associated with atrioventricular block in patients with suspected cardiac involvement sarcoidosis. Eur J Nucl Med Mol Imaging 2013;40:1558-66.CrossRefGoogle Scholar
  75. 75.
    Roberts WC, McAllister HA Jr, Ferrans VJ. Sarcoidosis of the heart. A clinicopathologic study of 35 necropsy patients (group 1) and review of 78 previously described necropsy patients (group 11). Am J Med 1977;63:86-108.CrossRefGoogle Scholar
  76. 76.
    Nelson JE, Kirschner PA, Teirstein AS. Sarcoidosis presenting as heart disease. Sarcoidosis Vasc Diffuse Lung Dis 1996;13:178-82.Google Scholar
  77. 77.
    Blankstein R, Osborne M, Naya M, et al. Cardiac positron emission tomography enhances prognostic assessments of patients with suspected cardiac sarcoidosis. J Am Coll Cardiol 2014;63:329-36.CrossRefGoogle Scholar
  78. 78.
    Patel MB, Mor-Avi V, Murtagh G, et al. Right heart involvement in patients with sarcoidosis. Echocardiography 2016;33:734-41.CrossRefGoogle Scholar
  79. 79.
    Ohira H, Ardle BM, deKemp RA, et al. Inter- and intraobserver agreement of (18)F-FDG PET/CT image interpretation in patients referred for assessment of cardiac sarcoidosis. J Nucl Med 2017;58:1324-9.CrossRefGoogle Scholar
  80. 80.
    Paquet N, Albert A, Foidart J, Hustinx R. Within-patient variability of (18)F-FDG: standardized uptake values in normal tissues. J Nucl Med 2004;45:784-8.Google Scholar
  81. 81.
    Manabe O, Ohira H, Yoshinaga K, Naya M, Oyama-Manabe N, Tamaki N. Qualitative and quantitative assessments of cardiac sarcoidosis using 18F-FDG PET. Ann Nucl Cardiol 2017;3:117.CrossRefGoogle Scholar
  82. 82.
    Ahmadian A, Brogan A, Berman J, et al. Quantitative interpretation of FDG PET/CT with myocardial perfusion imaging increases diagnostic information in the evaluation of cardiac sarcoidosis. J Nucl Cardiol 2014;21:925-39.CrossRefGoogle Scholar
  83. 83.
    Osborne MT, Hulten EA, Singh A, et al. Reduction in (1)(8)F-fluorodeoxyglucose uptake on serial cardiac positron emission tomography is associated with improved left ventricular ejection fraction in patients with cardiac sarcoidosis. J Nucl Cardiol 2014;21:166-74.CrossRefGoogle Scholar
  84. 84.
    Chiu CZ, Nakatani S, Zhang G, et al. Prevention of left ventricular remodeling by long-term corticosteroid therapy in patients with cardiac sarcoidosis. Am J Cardiol 2005;95:143-6.CrossRefGoogle Scholar
  85. 85.
    Betensky BP, Tschabrunn CM, Zado ES, et al. Long-term follow-up of patients with cardiac sarcoidosis and implantable cardioverter-defibrillators. Heart Rhythm 2012;9:884-91.CrossRefGoogle Scholar
  86. 86.
    Takaya Y, Kusano KF, Nakamura K, Ito H. Comparison of outcomes in patients with probable versus definite cardiac sarcoidosis. Am J Cardiol 2015;115:1293-7.CrossRefGoogle Scholar
  87. 87.
    Birnie D, Beanlands R. Clinical management of cardiac sarcoidosis. Ann Nucl Cardiol 2017;3:131-6.CrossRefGoogle Scholar
  88. 88.
    Waller AH, Blankstein R. Quantifying myocardial inflammation using F18-fluorodeoxyglucose positron emission tomography in cardiac sarcoidosis. J Nucl Cardiol 2014;21:940-3.CrossRefGoogle Scholar
  89. 89.
    Ahmadian A, Pawar S, Govender P, Berman J, Ruberg FL, Miller EJ. The response of FDG uptake to immunosuppressive treatment on FDG PET/CT imaging for cardiac sarcoidosis. J Nucl Cardiol 2017;24:413-24.CrossRefGoogle Scholar
  90. 90.
    Kaminaga T, Takeshita T, Yamauchi T, Kawamura H, Yasuda M. The role of iodine-123-labeled 15-(p-iodophenyl)-3R, S-methylpentadecanoic acid scintigraphy in the detection of local myocardial involvement of sarcoidosis. Int J Cardiol 2004;94:99-103.CrossRefGoogle Scholar
  91. 91.
    Kataoka S, Momose M, Fukushima K, et al. Regional myocardial damage and active inflammation in patients with cardiac sarcoidosis detected by non-invasive multi-modal imaging. Ann Nucl Med 2017;31:135-43.CrossRefGoogle Scholar
  92. 92.
    Manabe O, Kikuchi T, Scholte A, et al. Radiopharmaceutical tracers for cardiac imaging. J Nucl Cardiol 2018;25:1204-36.CrossRefGoogle Scholar
  93. 93.
    Ishiyama M, Soine LA, Vesselle HJ. Semi-quantitative metabolic values on FDG PET/CT including extracardiac sites of disease as a predictor of treatment course in patients with cardiac sarcoidosis. EJNMMI Res 2017;7:67.CrossRefGoogle Scholar
  94. 94.
    Bartlett ML, Bacharach SL, Voipio-Pulkki LM, Dilsizian V. Artifactual inhomogeneities in myocardial PET and SPECT scans in normal subjects. J Nucl Med 1995;36:188-95.Google Scholar
  95. 95.
    Gropler RJ, Siegel BA, Lee KJ, et al. Nonuniformity in myocardial accumulation of fluorine-18-fluorodeoxyglucose in normal fasted humans. J Nucl Med 1990;31:1749-56.Google Scholar
  96. 96.
    Shinichiro S, Yoshinaga K, Miyagawa M et al. 心臓サルコイドーシスに対する18F-FDG PET検査の手引き 2018年改訂. Shinzo-Kaku-Igaku 21:22-27.  https://doi.org/10.14951/jsnc.21-001.

Copyright information

© Japanese Society of Nuclear Cardiology and American Society of Nuclear Cardiology 2019

Authors and Affiliations

  • Shinichiro Kumita
    • 1
  • Keiichiro Yoshinaga
    • 2
    Email author
  • Masao Miyagawa
    • 3
  • Mitsuru Momose
    • 4
  • Keisuke Kiso
    • 5
  • Tokuo Kasai
    • 6
  • Masanao Naya
    • 7
  • Committee for diagnosis of cardiac sarcoidosis using 18F-FDG PET, Japanese Society of Nuclear Cardiology
  1. 1.Department of RadiologyNihon Medical UniversityTokyoJapan
  2. 2.Diagnostic and Therapeutic Nuclear Medicine, National Institutes for Quantum and Radiological Science and TechnologyNational Institute of Radiological SciencesChibaJapan
  3. 3.Department of RadiologyEhime University Graduate School of MedicineMatsuyamaJapan
  4. 4.Department of Diagnostic Imaging and Nuclear MedicineTokyo Women’s Medical UniversityTokyoJapan
  5. 5.Department of RadiologyNational Cerebral and Cardiovascular CenterOsakaJapan
  6. 6.Department of CardiologyNiigata University School of MedicineNiigataJapan
  7. 7.Department of CardiologyHokkaido University Graduate School of MedicineSapporoJapan

Personalised recommendations