Rubidium-82 positron emission tomography for detection of acute doxorubicin-induced cardiac effects in lymphoma patients

  • Adam Høgsbro LaursenEmail author
  • Marie Bayer Elming
  • Rasmus Sejersten Ripa
  • Philip Hasbak
  • Andreas Kjær
  • Lars Køber
  • Jacob Louis Marott
  • Jens Jakob Thune
  • Martin Hutchings
Original Article



Doxorubicin is a cornerstone in lymphoma treatment, but is limited by dose-dependent cardiotoxicity. Rubidium-82 positron emission tomography (82Rb PET) assesses coronary microvascular function through absolute quantification of myocardial perfusion and myocardial perfusion reserve (MPR). Doxorubicin-induced microvascular injury represents a potential early marker of cardiotoxicity.

Methods and results

We included 70 lymphoma patients scheduled for doxorubicin-based treatment. Cardiotoxicity was evaluated with 82Rb PET myocardial perfusion imaging during rest and adenosine stress before chemotherapy and shortly after the first doxorubicin exposure. Patients with a MPR decline > 20% were defined as having a low threshold for cardiotoxicity. In the 54 patients with complete data sets, MPR was significantly lower after the initial doxorubicin exposure (2.69 vs 2.51, P = .03). We registered a non-significant decline in stress perfusion (3.18 vs 3.02 ml/g/min, P = .08), but no change in resting myocardial perfusion. There were 13 patients with a low cardiotoxic threshold. These patients had a significantly higher age, but were otherwise similar to the remaining part of the study population.


Decreases in MPR after initial doxorubicin exposure in lymphoma patients may represent an early marker of doxorubicin-induced cardiotoxicity. The prognostic value of acute doxorubicin-induced changes in MPR remains to be investigated.



Heart failure


Left ventricular ejection fraction


Myocardial perfusion reserve


Positron emission tomography




Summed rest score


Summed stress score


Summed difference score



The authors would like to gratefully acknowledge the following research funds for their financial support: The Danish Cancer Society; Rigshospitalet Research Fund; Brødrene Hartmanns Fond; Eva og Henry Frænkels Mindefond; Dagmar Marshalls Fond; KV Fonden; Fabrikant Einar Willumsens Mindelegat; LM Byg; and lastly the research funds of the Department of Cardiology and the Department of Haematology, Rigshospitalet. Furthermore, we sincerely thank all the patients who agreed to participate in our study.



Supplementary material

12350_2018_1458_MOESM1_ESM.docx (19 kb)
Supplementary material 1 (DOCX 18 kb)
12350_2018_1458_MOESM2_ESM.pptx (506 kb)
Supplementary material 2 (PPTX 506 kb)


  1. 1.
    Zamorano JL, Lancellotti P, Rodriguez Muñoz D, Aboyans V, Asteggiano R, Galderisi M, et al. 2016 European Society of Cardiology position paper on cancer treatments and cardiovascular toxicity. Eur Heart J 2016;37:2768-801.CrossRefGoogle Scholar
  2. 2.
    Plana JC, Galderisi M, Barac A, Ewer MS, Ky B, Scherrer-Crosbie M, et al. Expert consensus for multimodality imaging evaluation of adult patients during and after cancer therapy: A report from the American society of echocardiography and the European association of cardiovascular imaging. J Am Soc Echocardiogr 2014;27:911-39.CrossRefGoogle Scholar
  3. 3.
    Cardinale D, Colombo A, Bacchiani G, Tedeschi I, Meroni CA, Veglia F, et al. Early detection of anthracycline cardiotoxicity and improvement with heart failure therapy. Circulation 2015;131:1981-8.CrossRefGoogle Scholar
  4. 4.
    Lefrak E, Pitha J, Rosenheim S, Gottlieb J. A clinicopathologic analysis of adriamycin cardiotoxicity. Cancer 1973;32:302-14.CrossRefGoogle Scholar
  5. 5.
    Von Hoff DD, Layard MW, Basa P, Davis HLJ, Von Hoff AL, Rozencweig M, et al. Risk factors for doxorubicin-induced congestive heart failure. Ann Intern Med US 1979;91:710-7.CrossRefGoogle Scholar
  6. 6.
    Swain SM, Whaley FS, Ewer MS. Congestive heart failure in patients treated with doxorubicin a retrospective analysis of three trials. Cancer 2003;97:2869-79.CrossRefGoogle Scholar
  7. 7.
    Armenian SH, Sun C, Shannon T, Mills G, Francisco L, Venkataraman K, et al. Incidence and predictors of congestive heart failure after autologous hematopoietic cell transplantation. Blood 2011;118:6023-9.CrossRefGoogle Scholar
  8. 8.
    Oliveira GH, Al-Kindi SG, Caimi PF, Lazarus HM. Maximizing anthracycline tolerability in hematologic malignancies: Treat to each heart’s content. Blood Rev 2016;30:169-78.CrossRefGoogle Scholar
  9. 9.
    Wu S, Ko Y, Teng M, Ko Y, Hsu L, Hsueh C, et al. Adriamycin-induced cardiomyocyte and endothelial cell apoptosis: In vitro and in vivo studies. J Mol Cell Cardiol 2002;34:1595-607.CrossRefGoogle Scholar
  10. 10.
    Murata T, Yamawaki H, Yoshimoto R, Hori M. Chronic effect of doxorubicin on vascular endothelium assessed by organ culture study. Life Sci 2001;69:2685-95.CrossRefGoogle Scholar
  11. 11.
    Kalivendi SV, Kotamraju S, Zhao H, Joseph J, Kalyanaraman B. Doxorubicin-induced apoptosis is associated with increased transcription of endothelial nitric-oxide synthase: Effect of antiapoptotic antioxidants and calcium. J Biol Chem 2001;276:47266-76.CrossRefGoogle Scholar
  12. 12.
    Duquaine D, Hirsch GA, Chakrabarti A, Han Z, Kehrer C, Brook R, et al. Rapid-onset endothelial dysfunction with adriamycin : evidence for a dysfunctional nitric oxide synthase. Vasc Med 2003;8:101-7.CrossRefGoogle Scholar
  13. 13.
    Kotamraju S, Konorev EA, Joseph J, Kalyanaraman B. Doxorubicin-induced apoptosis in endothelial cells and cardiomyocytes is ameliorated by nitrone spin traps and ebselen. Role of reactive oxygen and nitrogen species. J Biol Chem 2000;275:33585-92.CrossRefGoogle Scholar
  14. 14.
    Hagemann CE, Ghotbi AA, Kjær A, Hasbak P. Quantitative myocardial blood flow with Rubidium-82 PET: A clinical perspective. Am J Nucl Mol Imaging 2015;5:457-68.Google Scholar
  15. 15.
    Henzlova MJ, Duvall WL, Einstein AJ, Travin MI, Verberne HJ. ASNC imaging guidelines imaging guidelines for SPECT nuclear cardiology procedures: Stress, protocols, and tracers. J Nucl Cardiol 2016;23:606-39.CrossRefGoogle Scholar
  16. 16.
    Campo E, Swerdlow SH, Harris NL, Pileri S, Stein H, Jaffe ES. The 2008 WHO classification of lymphoid neoplasms and beyond: Evolving concepts and practical applications. Blood 2014;117:5019-32.CrossRefGoogle Scholar
  17. 17.
    Swerdlow SH, Campo E, Pileri SA, Harris NL, Stein H, Siebert R, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood 2016;127:2375-90.CrossRefGoogle Scholar
  18. 18.
    Cheson BD, Fisher RI, Barrington SF, Cavalli F, Schwartz LH, Zucca E, et al. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and Non-Hodgkin lymphoma: The Lugano classification. J Clin Oncol 2018;32:3059-68.CrossRefGoogle Scholar
  19. 19.
    Kitkungvan D, Johnson NP, Roby AE, Patel MB, Kirkeeide R, Gould KL. Routine clinical quantitative rest stress myocardial perfusion for managing coronary artery disease. JACC Cardiovasc Imaging 2017;10:565-77.CrossRefGoogle Scholar
  20. 20.
    Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. Circulation 2002;105:539-42.CrossRefGoogle Scholar
  21. 21.
    Lortie M, Beanlands RSB, Yoshinaga K, Klein R, Dasilva JN, DeKemp RA. Quantification of myocardial blood flow with dynamic PET imaging. Eur J Nucl Med Mol Imaging 2007;34:1765-74.CrossRefGoogle Scholar
  22. 22.
    Knudsen A, Christensen TE, Ghotbi AA, Hasbak P, Lebech A, Kjær A, et al. Normal myocardial flow reserve in HIV-infected patients on stable antiretroviral therapy—A cross-sectional study using Rubidium-82 PET/CT. Medicine (Baltimore) 2015;94:e1886.CrossRefGoogle Scholar
  23. 23.
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2015.
  24. 24.
    Volkova M, Russell R. Anthracycline cardiotoxicity: Prevalence, pathogenesis and treatment. Curr Cardiol Rev 2011;7:214-20.CrossRefGoogle Scholar
  25. 25.
    Bugger H, Guzman C, Zechner C, Palmeri M, Russell KS, Russell RR. Uncoupling protein downregulation in doxorubicin-induced heart failure improves mitochondrial coupling but increases reactive oxygen species generation. Cancer Chemother Pharmacol 2011;67:1381-8.CrossRefGoogle Scholar
  26. 26.
    Zhang S, Liu X, Bawa-Khalfe T, Lu L-S, Lyu YL, Liu LF, et al. Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nat Med 2012;18:1639-45.CrossRefGoogle Scholar
  27. 27.
    Khiati S, Rosa ID, Sourbier C, Ma X, Rao VA, Neckers LM. Mitochondrial topoisomerase I (Top1mt) is a novel limiting factor of doxorubicin cardiotoxicity. Clin Cancer Res 2014;20:4873-82.CrossRefGoogle Scholar
  28. 28.
    Davidson SM, Duchen MR. Endothelial mitochondria: Contributing to vascular function and disease. Circ Res 2007;100:1128-41.CrossRefGoogle Scholar
  29. 29.
    Davidson SM. Endothelial mitochondria and heart disease. Cardiovasc Res 2010;88:58-66.CrossRefGoogle Scholar
  30. 30.
    Dengel DR, Ness KK, Glasser SP, Williamson EB, Baker KS, Gurney JG. Endothelial function in young adult survivors of childhood acute lymphoblastic leukemia. J Pediatr Hematol Oncol 2008;30:20-5.CrossRefGoogle Scholar
  31. 31.
    Glass CK, Mitchell RN. Winning the battle, but losing the war: Mechanisms and morphology of cancer-therapy-associated cardiovascular toxicity. Cardiovasc Pathol 2017;30:55-63.CrossRefGoogle Scholar
  32. 32.
    Chatterjee K, Zhang J, Honbo N, Karliner JS. Doxorubicin cardiomyopathy. Cardiology 2010;115:155-62.CrossRefGoogle Scholar
  33. 33.
    Farhad H, Dunet V, Bachelard K, Allenbach G, Kaufmann PA, Prior JO. Added prognostic value of myocardial blood flow quantitation in rubidium-82 positron emission tomography imaging. Eur Heart J Cardiovasc Imaging 2013;14:1203-10.CrossRefGoogle Scholar
  34. 34.
    Fukushima K, Javadi MS, Higuchi T, Lautam R, Merrill J, Nekolla SG, et al. Prediction of short-term cardiovascular events using quantification of global myocardial flow reserve in patients referred for clinical 82 Rb PET perfusion imaging. J Nucl Med 2011;52:726-32.CrossRefGoogle Scholar
  35. 35.
    Taqueti VR, Everett BM, Murthy VL, Gaber M, Foster CR, Hainer J, et al. Coronary heart disease interaction of impaired coronary flow reserve and cardiomyocyte injury on adverse cardiovascular outcomes in patients without overt coronary artery disease. Circulation 2015;131:528-35.CrossRefGoogle Scholar
  36. 36.
    Ziadi MC, Robert A, Williams KA, Guo A, Ng ME, Chow BJW, et al. Impaired myocardial flow reserve on Rubidium-82 positron emission tomography imaging predicts adverse outcomes in patients assessed for myocardial ischemia. J Am Coll Cardiol 2011;58:740-8.CrossRefGoogle Scholar
  37. 37.
    Wang X, Sun CL, Quiñones-Lombraña A, Singh P, Landier W, Hageman L, et al. CELF4 variant and anthracycline-related cardiomyopathy: A children’s oncology group genome-wide association study. J Clin Oncol 2016;34:863-70.CrossRefGoogle Scholar
  38. 38.
    Olivotto I, Cecchi F, Gistri R, Lorenzoni R, Chiriatti G, Girolami F, et al. Relevance of coronary microvascular flow impairment to long-term remodeling and systolic dysfunction in hypertrophic cardiomyopathy. J Am Coll Cardiol 2006;47:1043.CrossRefGoogle Scholar
  39. 39.
    Van Tosh A, Votaw JR, Cooke CD, Cao JJ, Palestro CJ, Nichols KJ. Relationship of 82 Rb PET territorial myocardial asynchrony to arterial stenosis. J Nucl Cardiol 2018;24:34.Google Scholar

Copyright information

© American Society of Nuclear Cardiology 2018

Authors and Affiliations

  • Adam Høgsbro Laursen
    • 1
    Email author
  • Marie Bayer Elming
    • 2
  • Rasmus Sejersten Ripa
    • 3
  • Philip Hasbak
    • 3
  • Andreas Kjær
    • 3
  • Lars Køber
    • 2
  • Jacob Louis Marott
    • 4
  • Jens Jakob Thune
    • 2
    • 5
    • 6
  • Martin Hutchings
    • 1
  1. 1.Department of Hematology, RigshospitaletUniversity of CopenhagenCopenhagen ØDenmark
  2. 2.Department of Cardiology, RigshospitaletUniversity of CopenhagenCopenhagen ØDenmark
  3. 3.Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Department of Biomedical Sciences, RigshospitaletUniversity of CopenhagenCopenhagen ØDenmark
  4. 4.Copenhagen City Heart Study, Bispebjerg and Frederiksberg HospitalUniversity of CopenhagenFrederiksbergDenmark
  5. 5.Department of Cardiology, Bispebjerg and Frederiksberg HospitalUniversity of CopenhagenFrederiksbergDenmark
  6. 6.Department of Cardiology, Bispebjerg and Frederiksberg HospitalUniversity of CopenhagenCopenhagen NVDenmark

Personalised recommendations