Advertisement

Hybrid anatomo-functional imaging of coronary artery disease: Beneficial irrespective of its core components

  • Francesco NudiEmail author
  • Giuseppe Biondi-Zoccai
  • Andrea Romagnoli
  • Orazio Schillaci
  • Alessandro Nudi
  • Francesco Versaci
Review Article

Abstract

Coronary artery disease (CAD) is the most common and important cause of ischemic heart disease, with major implications on global morbidity and mortality. Non-invasive testing is crucial in the diagnostic and prognostic work-up of patients with or at risk of CAD, and also to guide decision making in terms of pharmacologic and revascularization therapy. The traditional paradigm is to view anatomic (i.e., coronary computed tomography) and functional imaging (e.g., myocardial perfusion scintigraphy) tests as opposing alternatives. Such approach is too reductionist and does not capitalize on the strengths of each type of test while risking to overlook the inherent limitations. The combination of anatomic and functional tests in a logic of hybrid imaging holds the promise of overcoming the limitations inherent to anatomic and functional testing, enabling more accurate diagnosis, prognosis, and guidance for revascularization in patients with CAD.

Keywords

Coronary artery disease computed tomography hybrid imaging single-photon emission computed tomography 

Abbreviations and acronyms

CAD

Coronary artery disease

CMR

Cardiac magnetic resonance

CT

Computed tomography

CTA

Computed tomography angiography

CTP

Computed tomography perfusion

CZT

Cadmium-zinc-telluride

CT-FFR

Computed tomography fractional flow reserve

PET

Positron emission tomography

SPECT

Single-photon emission computed tomography

SYNTAX

Synergy between PCI with Taxus and Cardiac Surgery

Notes

Disclosure

Prof. Biondi-Zoccai has consulted for Abbott Vascular and Bayer. Dr. F. Nudi, Prof. Romagnoli, Prof. Schillaci, Dr. A. Nudi, and Prof. Versaci have nothing to disclose.

Supplementary material

12350_2018_1562_MOESM1_ESM.pptx (1.6 mb)
Supplementary material 1 (PPTX 1634 kb)

References

  1. 1.
    GBD (2016) Causes of Death Collaborators. Global, regional, and national age-sex specific mortality for 264 causes of death, 1980–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017;390:1151-210.CrossRefGoogle Scholar
  2. 2.
    Schmied C, Borjesson M. Sudden cardiac death in athletes. J Intern Med 2014;275:93-103.CrossRefGoogle Scholar
  3. 3.
    Maseri A, Fuster V. Is there a vulnerable plaque? Circulation 2003;107:2068-71.CrossRefGoogle Scholar
  4. 4.
    Topol EJ, Nissen SE. Our preoccupation with coronary luminology. The dissociation between clinical and angiographic findings in ischemic heart disease. Circulation 1995;92:2333-42.CrossRefGoogle Scholar
  5. 5.
    Nudi F, Iskandrian AE, Schillaci O, Peruzzi M, Frati G, Biondi-Zoccai G. Diagnostic accuracy of myocardial perfusion imaging with CZT technology: Systemic review and meta-analysis of comparison with invasive coronary angiography. JACC Cardiovasc Imaging 2017;10:787-94.CrossRefGoogle Scholar
  6. 6.
    Nudi F, Lotrionte M, Biasucci LM, Peruzzi M, Marullo AG, Frati G, Valenti V, Giordano A, Biondi-Zoccai G. Comparative safety and effectiveness of coronary computed tomography: Systematic review and meta-analysis including 11 randomized controlled trials and 19,957 patients. Int J Cardiol 2016;222:352-8.CrossRefGoogle Scholar
  7. 7.
    Stuijfzand WJ, Raijmakers PG, Driessen RS, van Royen N, Nap A, van Rossum AC, Knaapen P. Value of hybrid imaging with PET/CT to guide percutaneous revascularization of chronic total coronary occlusion. Curr Cardiovasc Imaging Rep 2015;8:26.CrossRefGoogle Scholar
  8. 8.
    Danad I, Szymonifka J, Twisk JWR, Norgaard BL, Zarins CK, Knaapen P, Min JK. Diagnostic performance of cardiac imaging methods to diagnose ischaemia-causing coronary artery disease when directly compared with fractional flow reserve as a reference standard: a meta-analysis. Eur Heart J 2017;38:991-8.Google Scholar
  9. 9.
    Gaemperli O, Bengel FM, Kaufmann PA. Cardiac hybrid imaging. Eur Heart J 2011;32:2100-8.CrossRefGoogle Scholar
  10. 10.
    Rizvi A, Han D, Danad I, Ó Hartaigh B, Lee JH, Gransar H, Stuijfzand WJ, Roudsari HM, Park MW, Szymonifka J, Chang HJ, Jones EC, Knaapen P, Lin FY, Min JK, Peña JM. Diagnostic performance of hybrid cardiac imaging methods for assessment of obstructive coronary artery disease compared with stand-alone coronary computed tomography angiography: A Meta-Analysis. JACC Cardiovasc Imaging 2018;11:589-99.CrossRefGoogle Scholar
  11. 11.
    Chang SA, Kim RJ. The use of cardiac magnetic resonance in patients with suspected coronary artery disease: A clinical practice perspective. J Cardiovasc Ultrasound 2016;24:96-103.CrossRefGoogle Scholar
  12. 12.
    Min JK, Arsanjani R. Coronary CT angiography decreases the length of stay in emergency department versus standard therapy in patients presenting with acute chest pain, but results in increased downstream testing and radiation exposure. Evid Based Med 2013;18:146-7.CrossRefGoogle Scholar
  13. 13.
    Shaw LJ, Hachamovitch R, Berman DS, Marwick TH, Lauer MS, Heller GV, Iskandrian AE, Kesler KL, Travin MI, Lewin HC, Hendel RC, Borges-Neto S, Miller DD. The economic consequences of available diagnostic and prognostic strategies for the evaluation of stable angina patients: an observational assessment of the value of precatheterization ischemia. Economics of Noninvasive Diagnosis (END) Multicenter Study Group. J Am Coll Cardiol 1999;33:661-9.CrossRefGoogle Scholar
  14. 14.
    Einstein AJ. Effects of radiation exposure from cardiac imaging: how good are the data? J Am Coll Cardiol 2012;59:553-65.CrossRefGoogle Scholar
  15. 15.
    Carpeggiani C, Picano E, Brambilla M, Michelassi C, Knuuti J, Kauffman P, Underwood SR, Neglia D, EVINCI Study Investigators. Variability of radiation doses of cardiac diagnostic imaging tests: The RADIO-EVINCI study (RADIationdOse subproject of the EVINCI study). BMC Cardiovasc Disord 2017;17:63.CrossRefGoogle Scholar
  16. 16.
    Nudi F, Pinto A, Procaccini E, Neri G, Vetere M, Tomai F, Gaspardone A, Biondi-Zoccai G, Schillaci O. A novel clinically relevant segmentation method and corresponding maximal ischemia score to risk-stratify patients undergoing myocardial perfusion scintigraphy. J Nucl Cardiol 2014;21:807-18.CrossRefGoogle Scholar
  17. 17.
    Nudi F, Schillaci O, Neri G, Pinto A, Procaccini E, Vetere M, Frati G, Tomai F, Biondi-Zoccai G. Prognostic impact of location and extent of vessel-related ischemia at myocardial perfusion scintigraphy in patients with or at risk for coronary artery disease. J Nucl Cardiol 2016;23:274-84.CrossRefGoogle Scholar
  18. 18.
    Nudi F, Biondi-Zoccai G, Schillaci O, di Belardino N, Versaci F, Nudi A, Pinto A, Neri G, Procaccini E, Frati G, Iskandrian AE. Prognostic accuracy of myocardial perfusion imaging in octogenarians. J Nucl Cardiol 2017;25:1342-9.CrossRefGoogle Scholar
  19. 19.
    Nudi F, Di Belardino N, Pinto A, Procaccini E, Neri G, Schillaci O, Tomai F, Frati G, Biondi-Zoccai G. Assessment of the fate of myocardial necrosis by serial myocardial perfusion imaging. J Nucl Cardiol 2018;25:496-505.CrossRefGoogle Scholar
  20. 20.
    Biondi-Zoccai G, Pinto A, Versaci F, Procaccini E, Neri G, Sesti G, Uccioli L, Vetere M, Peruzzi M, Nudi F. Comparative impact of hypoglycemic agents on severity and extent of myocardial ischemia in patients with type 2 diabetes mellitus undergoing myocardial perfusion scintigraphy. J Cardiovasc Pharmacol 2016;68:162-70.CrossRefGoogle Scholar
  21. 21.
    Nudi F, Biondi-Zoccai G. Cadmium-zinc-telluride myocardial perfusion imaging: The dream of a single test gets nearer. J Nucl Cardiol 2018;25:550-4.CrossRefGoogle Scholar
  22. 22.
    Pazhenkottil AP, Nkoulou RN, Ghadri JR, Herzog BA, Buechel RR, Küest SM, Wolfrum M, Fiechter M, Husmann L, Gaemperli O, Kaufmann PA. Prognostic value of cardiac hybrid imaging integrating single-photon emission computed tomography with coronary computed tomography angiography. Eur Heart J 2011;32:1465-71.CrossRefGoogle Scholar
  23. 23.
    Bourantas CV, Jaffer FA, Gijsen FJ, van Soest G, Madden SP, Courtney BK, Fard AM, Tenekecioglu E, Zeng Y, van der Steen AFW, Emelianov S, Muller J, Stone PH, Marcu L, Tearney GJ, Serruys PW. Hybrid intravascular imaging: Recent advances, technical considerations, and current applications in the study of plaque pathophysiology. Eur Heart J 2017;38:400-12.CrossRefGoogle Scholar
  24. 24.
    Saraste A, Knuuti J. Cardiac PET, CT, and MR: What are the advantages of hybrid imaging? Curr Cardiol Rep 2012;14:24-31.CrossRefGoogle Scholar
  25. 25.
    Flotats A, Knuuti J, Gutberlet M, Marcassa C, Bengel FM, Kaufmann PA, Rees MR, Hesse B, Cardiovascular Committee of the EANM, the ESCR and the ECNC. Hybrid cardiac imaging: SPECT/CT and PET/CT. A joint position statement by the European Association of Nuclear Medicine (EANM), the European Society of Cardiac Radiology (ESCR) and the European Council of Nuclear Cardiology (ECNC). Eur J Nucl Med Mol Imaging 2011;38:201-12.CrossRefGoogle Scholar
  26. 26.
    Novara M, D’Ascenzo F, Gonella A, Bollati M, Biondi-Zoccai G, Moretti C, Omedè P, Sciuto F, Sheiban I, Gaita F. Changing of SYNTAX score performing fractional flow reserve in multivessel coronary artery disease. J Cardiovasc Med (Hagerstown) 2012;13:368-75.CrossRefGoogle Scholar
  27. 27.
    Tonino PA, Fearon WF, De Bruyne B, Oldroyd KG, Leesar MA, Ver Lee PN, Maccarthy PA, Van’t Veer M, Pijls NH. Angiographic versus functional severity of coronary artery stenoses in the FAME study fractional flow reserve versus angiography in multivessel evaluation. J Am Coll Cardiol 2010;55:2816-21.CrossRefGoogle Scholar
  28. 28.
    Abdel Fattah A, Kamal AM, Pancholy S, Ghods M, Russell J, Cassel D, Wasserleben V, Heo J, Iskandrian AS. Prognostic implications of normal exercise tomographic thallium images in patients with angiographic evidence of significant coronary artery disease. Am J Cardiol 1994;74:769-71.CrossRefGoogle Scholar
  29. 29.
    Iskander S, Iskandrian AE. Risk assessment using single-photon emission computed tomographic technetium-99m sestamibi imaging. J Am Coll Cardiol 1998;32:57-62.CrossRefGoogle Scholar
  30. 30.
    Metz LD, Beattie M, Hom R, Redberg RF, Grady D, Fleischmann KE. The prognostic value of normal exercise myocardial perfusion imaging and exercise echocardiography: A meta-analysis. J Am Coll Cardiol 2007;49:227-37.CrossRefGoogle Scholar
  31. 31.
    de Jong MC, Genders TS, van Geuns RJ, Moelker A, Hunink MG. Diagnostic performance of stress myocardial perfusion imaging for coronary artery disease: A systematic review and meta-analysis. Eur Radiol 2012;22:1881-95.CrossRefGoogle Scholar
  32. 32.
    Maffessanti F, Patel AR, Patel MB, Walter JJ, Mediratta A, Medvedofsky D, Kachenoura N, Lang RM, Mor-Avi V. Non-invasive assessment of the haemodynamic significance of coronary stenosis using fusion of cardiac computed tomography and 3D echocardiography. Eur Heart J Cardiovasc Imaging 2017;18:670-80.Google Scholar
  33. 33.
    Mor-Avi V, Patel MB, Maffessanti F, Singh A, Medvedofsky D, Zaidi SJ, Mediratta A, Narang A, Nazir N, Kachenoura N, Lang RM, Patel AR. Fusion of three-dimensional echocardiographic regional myocardial strain with cardiac computed tomography for noninvasive evaluation of the hemodynamic impact of coronary stenosis in patients with chest pain. J Am Soc Echocardiogr 2018;31:664-73.CrossRefGoogle Scholar
  34. 34.
    de Knegt MC, Fuchs A, Weeke P, Møgelvang R, Hassager C, Kofoed KF. Optimisation of coronary vascular territorial 3D echocardiographic strain imaging using computed tomography: A feasibility study using image fusion. Int J Cardiovasc Imaging 2016;32:1715-23.CrossRefGoogle Scholar
  35. 35.
    Kiaos A, Tziatzios I, Hadjimiltiades S, Karvounis C, Karamitsos TD. Diagnostic performance of stress perfusion cardiac magnetic resonance for the detection of coronary artery disease: A systematic review and meta-analysis. Int J Cardiol 2018;252:229-33.CrossRefGoogle Scholar
  36. 36.
    Donati OF, Alkadhi H, Scheffel H, Kuehnel C, Hennemuth A, Wyss C, Azemaj N, Plass A, Kozerke S, Falk V, Leschka S, Stolzmann P. 3D fusion of functional cardiac magnetic resonance imaging and computed tomography coronary angiography: accuracy and added clinical value. Invest Radiol 2011;46:331-40.Google Scholar
  37. 37.
    Scheffel H, Stolzmann P, Alkadhi H, Azemaj N, Plass A, Baumueller S, Desbiolles L, Leschka S, Kozerke S, Falk V, Boesiger P, Wyss C, Marincek B, Donati OF. Low-dose CT and cardiac MR for the diagnosis of coronary artery disease: Accuracy of single and combined approaches. Int J Cardiovasc Imaging 2010;26(5):579-90.CrossRefGoogle Scholar
  38. 38.
    Groothuis JG, Beek AM, Brinckman SL, Meijerink MR, van den Oever ML, Hofman MB, van Kuijk C, van Rossum AC. Combined non-invasive functional and anatomical diagnostic work-up in clinical practice: The magnetic resonance and computed tomography in suspected coronary artery disease (MARCC) study. Eur Heart J 2013;34:1990-8.CrossRefGoogle Scholar
  39. 39.
    Salata BM, Singh P. Role of cardiac PET in clinical practice. Curr Treat Options Cardiovasc Med 2017;19:93.CrossRefGoogle Scholar
  40. 40.
    Zampella E, Acampa W, Assante R, Nappi C, Gaudieri V, Mainolfi CG, Green R, Cantoni V, Panico M, Klain M, Petretta M, Slomka PJ, Cuocolo A. Combined evaluation of regional coronary artery calcium and myocardial perfusion by 82Rb PET/CT in the identification of obstructive coronary artery disease. Eur J Nucl Med Mol Imaging 2018;45:521-9.CrossRefGoogle Scholar
  41. 41.
    Thomassen A, Petersen H, Diederichsen AC, Mickley H, Jensen LO, Johansen A, Gerke O, Braad PE, Thayssen P, Høilund-Carlsen MM, Vach W, Knuuti J, Høilund-Carlsen PF. Hybrid CT angiography and quantitative 15O-water PET for assessment of coronary artery disease: comparison with quantitative coronary angiography. Eur J Nucl Med Mol Imaging 2013;40:1894-904.CrossRefGoogle Scholar
  42. 42.
    Groves AM, Speechly-Dick ME, Kayani I, Pugliese F, Endozo R, McEwan J, Menezes LJ, Habib SB, Prvulovich E, Ell PJ. First experience of combined cardiac PET/64-detector CT angiography with invasive angiographic validation. Eur J Nucl Med Mol Imaging 2009;36:2027-33.CrossRefGoogle Scholar
  43. 43.
    Stuijfzand WJ, Uusitalo V, Kero T, Danad I, Rijnierse MT, Saraste A, Raijmakers PG, Lammertsma AA, Harms HJ, Heymans MW, Huisman MC, Marques KM, Kajander SA, Pietilä M, Sörensen J, van Royen N, Knuuti J, Knaapen P. Relative flow reserve derived from quantitative perfusion imaging may not outperform stress myocardial blood flow for identification of hemodynamically significant coronary artery disease. Circ Cardiovasc Imaging 2015;8:e002400.CrossRefGoogle Scholar
  44. 44.
    Jaarsma C, Leiner T, Bekkers SC, Crijns HJ, Wildberger JE, Nagel E, Nelemans PJ, Schalla S. Diagnostic performance of noninvasive myocardial perfusion imaging using single-photon emission computed tomography, cardiac magnetic resonance, and positron emission tomography imaging for the detection of obstructive coronary artery disease: A meta-analysis. J Am Coll Cardiol 2012;59:1719-28.CrossRefGoogle Scholar
  45. 45.
    Mouden M, Ottervanger JP, Knollema S, Timmer JR, Reiffers S, Oostdijk AH, de Boer MJ, Jager PL. Myocardial perfusion imaging with a cadmium zinc telluride-based gamma camera versus invasive fractional flow reserve. Eur J Nucl Med Mol Imaging 2014;41:956-62.CrossRefGoogle Scholar
  46. 46.
    Winther S, Svensson M, Jørgensen HS, Bouchelouche K, Gormsen LC, Pedersen BB, Holm NR, Bøtker HE, Ivarsen P, Bøttcher M. Diagnostic performance of coronary CT angiography and myocardial perfusion imaging in kidney transplantation candidates. JACC Cardiovasc Imaging 2015;8:553-62.CrossRefGoogle Scholar
  47. 47.
    Schaap J, de Groot JA, Nieman K, Meijboom WB, Boekholdt SM, Kauling RM, Post MC, Van der Heyden JA, de Kroon TL, Rensing BJ, Moons KG, Verzijlbergen JF. Added value of hybrid myocardial perfusion SPECT and CT coronary angiography in the diagnosis of coronary artery disease. Eur Heart J Cardiovasc Imaging 2014;15:1281-8.CrossRefGoogle Scholar
  48. 48.
    Branch KR, Haley RD, Bittencourt MS, Patel AR, Hulten E, Blankstein R. Myocardial computed tomography perfusion. Cardiovasc Diagn Ther 2017;7:452-62.CrossRefGoogle Scholar
  49. 49.
    Lu M, Wang S, Sirajuddin A, Arai AE, Zhao S. Dynamic stress computed tomography myocardial perfusion for detecting myocardial ischemia: A systematic review and meta-analysis. Int J Cardiol 2018;258:325-31.CrossRefGoogle Scholar
  50. 50.
    Pelgrim GJ, Dorrius M, Xie X, den Dekker MA, Schoepf UJ, Henzler T, Oudkerk M, Vliegenthart R. The dream of a one-stop-shop: Meta-analysis on myocardial perfusion CT. Eur J Radiol 2015;84:2411-20.CrossRefGoogle Scholar
  51. 51.
    Gonzalez JA, Lipinski MJ, Flors L, Shaw PW, Kramer CM, Salerno M. Meta-analysis of diagnostic performance of coronary computed tomography angiography, computed tomography perfusion, and computed tomography-fractional flow reserve in functional myocardial ischemia assessment versus invasive fractional flow reserve. Am J Cardiol 2015;116:1469-78.CrossRefGoogle Scholar
  52. 52.
    Osawa K, Miyoshi T, Miki T, Koyama Y, Sato S, Kanazawa S, Ito H. Diagnostic performance of first-pass myocardial perfusion imaging without stress with computed tomography (CT) compared with coronary CT angiography alone, with fractional flow reserve as the reference standard. PLoS ONE 2016;11:e0149170.CrossRefGoogle Scholar
  53. 53.
    Sianos G, Morel MA, Kappetein AP, Morice MC, Colombo A, Dawkins K, van den Brand M, Van Dyck N, Russell ME, Mohr FW, Serruys PW. The SYNTAX Score: An angiographic tool grading the complexity of coronary artery disease. EuroIntervention 2005;1:219-27.Google Scholar
  54. 54.
    Suh YJ, Han K, Chang S, Kim JY, Im DJ, Hong YJ, Lee HJ, Hur J, Kim YJ, Choi BW. SYNTAX score based on coronary computed tomography angiography may have a prognostic value in patients with complex coronary artery disease: An observational study from a retrospective cohort. Medicine (Baltimore) 2017;96:e7999.CrossRefGoogle Scholar
  55. 55.
    Maini R, Moscona J, Katigbak P, Fernandez C, Sidhu G, Saleh Q, Irimpen A, Samson R, LeJemtel T. Instantaneous wave-free ratio as an alternative to fractional flow reserve in assessment of moderate coronary stenoses: A meta-analysis of diagnostic accuracy studies. Cardiovasc Revasc Med 2018;19:613-20.CrossRefGoogle Scholar
  56. 56.
    Collet C, Onuma Y, Miyazaki Y, Morel MA, Serruys PW. Integration of non-invasive functional assessments with anatomical risk stratification in complex coronary artery disease: the non-invasive functional SYNTAX score. Cardiovasc Diagn Ther 2017;7:151-8.CrossRefGoogle Scholar
  57. 57.
    Nappi C, Gaudieri V, Acampa W, Arumugam P, Assante R, Zampella E, Mannarino T, Mainolfi CG, Imbriaco M, Petretta M, Cuocolo A. Coronary vascular age: An alternate means for predicting stress-induced myocardial ischemia in patients with suspected coronary artery disease. J Nucl Cardiol 2018;1:2.  https://doi.org/10.1007/s12350-018-1191-1.Google Scholar
  58. 58.
    Andrews JPM, Fayad ZA, Dweck MR. New methods to image unstable atherosclerotic plaques. Atherosclerosis 2018;272:118-28.CrossRefGoogle Scholar
  59. 59.
    Iskandrian AS, Verani MS, Heo J. Pharmacologic stress testing: mechanism of action, hemodynamic responses, and results in detection of coronary artery disease. J Nucl Cardiol 1994;1:94-111.CrossRefGoogle Scholar
  60. 60.
    Coenen A, Lubbers MM, Kurata A, Kono A, Dedic A, Chelu RG, Dijkshoorn ML, van Geuns RJ, Schoebinger M, Itu L, Sharma P, Nieman K. Coronary CT angiography derived fractional flow reserve: methodology and evaluation of a point of care algorithm. J Cardiovasc Comput Tomogr 2016;10:105–13.CrossRefGoogle Scholar

Copyright information

© American Society of Nuclear Cardiology 2018

Authors and Affiliations

  • Francesco Nudi
    • 1
    • 2
    • 3
    Email author
  • Giuseppe Biondi-Zoccai
    • 4
    • 5
  • Andrea Romagnoli
    • 6
  • Orazio Schillaci
    • 5
    • 7
  • Alessandro Nudi
    • 1
    • 3
  • Francesco Versaci
    • 8
  1. 1.Service of Hybrid Cardio ImagingMadonna Della Fiducia ClinicRomeItaly
  2. 2.Ostia RadiologicaRomeItaly
  3. 3.ReplycareRomeItaly
  4. 4.Department of Medico-Surgical Sciences and BiotechnologiesSapienza University of RomeLatinaItaly
  5. 5.IRCCS NEUROMEDPozzilliItaly
  6. 6.Department of RadiologyTor Vergata UniversityRomeItaly
  7. 7.Department of Nuclear MedicineTor Vergata UniversityRomeItaly
  8. 8.Division of CardiologyS. Maria Goretti HospitalLatinaItaly

Personalised recommendations