Journal of Nuclear Cardiology

, Volume 26, Issue 1, pp 200–207 | Cite as

Microvascular dysfunction in infiltrative cardiomyopathies

  • Ornella RimoldiEmail author
  • Francesco Maranta
Review Article


Infiltrative heart diseases are characterized by myocardial tissue alterations leading to mechanical dysfunction which in turn develops into bi-ventricular congestive heart failure. Also the coronary microvasculature undergoes significant remodeling and dysfunction. The effects of the unbalance of the mechanical cross-talk between cardiac muscle and vessels and of the impairment of vasodilatory function can be measured non-invasively by means of positron emission tomography and cardiac magnetic resonance.


Coronary artery disease vasodilator stress cardiomyopathy coronary blood flow 



The authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter discussed in this manuscript.

Supplementary material

12350_2017_991_MOESM1_ESM.pptx (682 kb)
Supplementary material 1 (PPTX 681 kb)


  1. 1.
    Rapezzi C, Merlini G, Quarta CC, Riva L, Longhi S, Leone O, et al. Systemic cardiac amyloidoses: Disease profiles and clinical courses of the 3 main types. Circulation 2009;120:1203-12.CrossRefGoogle Scholar
  2. 2.
    Maleszewski JJ. Cardiac amyloidosis: Pathology, nomenclature, and typing. Cardiovasc Pathol 2015;24:343-50.CrossRefGoogle Scholar
  3. 3.
    Larsen BT, Mereuta OM, Dasari S, Fayyaz AU, Theis JD, Vrana JA, et al. Correlation of histomorphological pattern of cardiac amyloid deposition with amyloid type: A histological and proteomic analysis of 108 cases. Histopathology 2016;68:648-56.CrossRefGoogle Scholar
  4. 4.
    Camici PG, d’Amati G, Rimoldi O. Coronary microvascular dysfunction: mechanisms and functional assessment. Nat Rev Cardiol 2015;12:48-62.CrossRefGoogle Scholar
  5. 5.
    Toyota E, Koshida R, Hattan N, Chilian WM. Regulation of the coronary vasomotor tone: What we know and where we need to go. J Nucl Cardiol 2001;8:599-605.CrossRefGoogle Scholar
  6. 6.
    Pries AR, Badimon L, Bugiardini R, Camici PG, Dorobantu M, Duncker DJ, et al. Coronary vascular regulation, remodelling, and collateralization: Mechanisms and clinical implications on behalf of the working group on coronary pathophysiology and microcirculation. Eur Heart J 2015;36:3134-46.CrossRefGoogle Scholar
  7. 7.
    Tune JD. Coronary circulation. In: Granger ND, Granger J, editors. Colloquium series on integrated systems physiology: From molecule to function. New York: Springer; 2014. p. 1-89.Google Scholar
  8. 8.
    Crea F, Lanza GA, Camici PG. Coronary microvascular dysfunction. Milan: Springer; 2014.CrossRefGoogle Scholar
  9. 9.
    Whitaker DC, Tungekar MF, Dussek JE. Angina with a normal coronary angiogram caused by amyloidosis. Heart 2004;90:e54.CrossRefGoogle Scholar
  10. 10.
    Dorbala S, Vangala D, Bruyere J Jr, Quarta C, Kruger J, Padera R, et al. Coronary microvascular dysfunction is related to abnormalities in myocardial structure and function in cardiac amyloidosis. JACC Heart Fail 2014;2:358-67.CrossRefGoogle Scholar
  11. 11.
    Camici PG, Crea F. Coronary microvascular dysfunction. N Engl J Med 2007;356:830-40.CrossRefGoogle Scholar
  12. 12.
    Crea F, Camici PG, Bairey Merz CN. Coronary microvascular dysfunction: an update. Eur Heart J 2014;35:1101-11.CrossRefGoogle Scholar
  13. 13.
    Teunissen PFA, de Waard GA, Hollander MR, Robbers LFHJ, Danad I, Biesbroek PS, et al. Doppler-derived intracoronary physiology indices predict the occurrence of microvascular injury and microvascular perfusion deficits after angiographically successful primary percutaneous coronary intervention. Circulation 2015;8:e001786.Google Scholar
  14. 14.
    van de Hoef TP, Nolte F, Rolandi MC, Piek JJ, van den Wijngaard JP, Spaan JA, et al. Coronary pressure-flow relations as basis for the understanding of coronary physiology. J Mol Cell Cardiol 2012;52:786-93.CrossRefGoogle Scholar
  15. 15.
    Bravo PE, Di Carli MF, Dorbala S. Role of PET to evaluate coronary microvascular dysfunction in non-ischemic cardiomyopathies. Heart Fail Rev 2017;22:455-64.CrossRefGoogle Scholar
  16. 16.
    Heydari B, Kwong RY, Jerosch-Herold M. Technical advances and clinical applications of quantitative myocardial blood flow imaging with cardiac MRI. Prog Cardiovasc Dis 2015;57:615-22.CrossRefGoogle Scholar
  17. 17.
    Hautvast GL, Chiribiri A, Lockie T, Breeuwer M, Nagel E, Plein S. Quantitative analysis of transmural gradients in myocardial perfusion magnetic resonance images. Magn Reson Med 2011;66:1477-87.CrossRefGoogle Scholar
  18. 18.
    Sipe JD, Benson MD, Buxbaum JN, Ikeda S, Merlini G, Saraiva MJ, et al. Nomenclature 2014: Amyloid fibril proteins and clinical classification of the amyloidosis. Amyloid 2014;21:221-24.CrossRefGoogle Scholar
  19. 19.
    Crotty TB, Li CY, Edwards WD, Suman VJ. Amyloidosis and endomyocardial biopsy: Correlation of extent and pattern of deposition with amyloid immunophenotype in 100 cases. Cardiovasc Pathol 1995;4:39-42.CrossRefGoogle Scholar
  20. 20.
    Biolo A, Ramamurthy S, Connors LH, O’Hara CJ, Meier-Ewert HK, Soo Hoo PT, et al. Matrix metalloproteinases and their tissue inhibitors in cardiac amyloidosis: Relationship to structural, functional myocardial changes and to light chain amyloid deposition. Circ Heart Fail 2008;1:249-57.CrossRefGoogle Scholar
  21. 21.
    McWilliams-Koeppen HP, Foster JS, Hackenbrack N, Ramirez-Alvarado M, Donohoe D, Williams A, et al. Light chain amyloid fibrils cause metabolic dysfunction in human cardiomyocytes. PLoS ONE 2015;10:e0137716.CrossRefGoogle Scholar
  22. 22.
    Fontana M, Banypersad SM, Treibel TA, Abdel-Gadir A, Maestrini V, Lane T, et al. Differential myocyte responses in patients with cardiac transthyretin amyloidosis and light-chain amyloidosis: A cardiac MR imaging study. Radiology 2015;277:388-97.CrossRefGoogle Scholar
  23. 23.
    Ong KC, Askew JW, Dispenzieri A, Maleszewski JJ, Klarich KW, Anavekar NS, et al. Abnormal stress echocardiography findings in cardiac amyloidosis. Amyloid 2016;23:124-31.CrossRefGoogle Scholar
  24. 24.
    Falk RH, Alexander KM, Liao R, Dorbala S. AL (light-chain) cardiac amyloidosis: A review of diagnosis and therapy. J Am Coll Cardiol 2016;68:1323-41.CrossRefGoogle Scholar
  25. 25.
    Wittich CM, Neben-Wittich MA, Mueller PS, Gertz MA, Edwards WD. Deposition of amyloid proteins in the epicardial coronary arteries of 58 patients with primary systemic amyloidosis. Cardiovasc Pathol 2007;16:75-78.CrossRefGoogle Scholar
  26. 26.
    Smith RR, Hutchins GM. Ischemic heart disease secondary to amyloidosis of intramyocardial arteries. Am J Cardiol 1979;44:413-7.CrossRefGoogle Scholar
  27. 27.
    Neben-Wittich MA, Wittich CM, Mueller PS, Larson DR, Gertz MA, Edwards WD. Obstructive intramural coronary amyloidosis and myocardial ischemia are common in primary amyloidosis. Am J Med 2005;118:1287.CrossRefGoogle Scholar
  28. 28.
    Brenner DA, Jain M, Pimentel DR, Wang B, Connors LH, Skinner M, et al. Human amyloidogenic light chains directly impair cardiomyocyte function through an increase in cellular oxidant stress. Circ Res 2004;94:1008-10.CrossRefGoogle Scholar
  29. 29.
    Migrino RQ, Truran S, Gutterman DD, Franco DA, Bright M, Schlundt B, et al. Human microvascular dysfunction and apoptotic injury induced by AL amyloidosis light chain proteins. Am J Physiol Heart Circ Physiol 2011;301:H2305-12.CrossRefGoogle Scholar
  30. 30.
    Coutinho MCA, Cortez-Dias N, Cantinho G, Conceição I, Oliveira A, Bordalo e Sá A, et al. Reduced myocardial 123-iodine metaiodobenzylguanidine uptake a prognostic marker in familial amyloid polyneuropathy. Circ Cardiovasc Imaging 2013;6:627-36.CrossRefGoogle Scholar
  31. 31.
    Noordzij W, Glaudemans AW, van Rheenen RW, Hazenberg BP, Tio RA, Dierckx RA, et al. (123)I-Labelled metaiodobenzylguanidine for the evaluation of cardiac sympathetic denervation in early stage amyloidosis. Eur J Nucl Med Mol Imaging 2012;39:1609-17.CrossRefGoogle Scholar
  32. 32.
    Al Suwaidi J, Velianou JL, Gertz MA, Cannon RO 3rd, Higano ST, Holmes DR Jr, et al. Systemic amyloidosis presenting with angina pectoris. Ann Intern Med 1999;131:838-41.CrossRefGoogle Scholar
  33. 33.
    Dorbala S, Vangala D, Semer J, Strader C, Bruyere JR Jr, Di Carli MF, et al. Imaging cardiac amyloidosis: A pilot study using (1)(8)F-florbetapir positron emission tomography. Eur J Nucl Med Mol Imaging 2014;41:1652-62.CrossRefGoogle Scholar
  34. 34.
    Bokhari S, Shahzad R, Castaño A, Maurer MS. Nuclear imaging modalities for cardiac amyloidosis. J Nucl Cardiol 2014;21:175-84.CrossRefGoogle Scholar
  35. 35.
    Camici PG, Rimoldi OE. The clinical value of myocardial blood flow measurement. J Nucl Med 2009;50:1076-87.CrossRefGoogle Scholar
  36. 36.
    Fontana M, Banypersad SM, Treibel TA, Maestrini V, Sado DM, White SK, et al. Native T1 mapping in transthyretin amyloidosis. JACC Cardiovasc Imaging 2014;7:157-65.CrossRefGoogle Scholar
  37. 37.
    Li R, Yang ZG, Wen LY, Liu X, Xu HY, Zhang Q, et al. Regional myocardial microvascular dysfunction in cardiac amyloid light-chain amyloidosis: Assessment with 3T cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2016;18:16.CrossRefGoogle Scholar
  38. 38.
    Desnick RJ, Wasserstein MP. Fabry disease: Clinical features and recent advances in enzyme replacement therapy. Adv Nephrol Necker Hosp 2001;31:317-39.Google Scholar
  39. 39.
    Germain DP. Fabry disease. Orphanet J Rare Dis 2010;5:30.CrossRefGoogle Scholar
  40. 40.
    Nakao S, Takenaka T, Maeda M, Kodama C, Tanaka A, Tahara M, et al. An atypical variant of Fabry’s disease in men with left ventricular hypertrophy. N Engl J Med 1995;333:288-93.CrossRefGoogle Scholar
  41. 41.
    Shah JS, Lee P, Hughes D, Thaman R, Sachdev B, Pellerin D, et al. The natural history of left ventricular systolic function in Anderson-Fabry disease. Heart 2005;91:533-34.CrossRefGoogle Scholar
  42. 42.
    O’Mahony C, Elliott P. Anderson-Fabry disease and the heart. Prog Cardiovasc Dis 2010;52:326-35.CrossRefGoogle Scholar
  43. 43.
    Chimenti C, Morgante E, Tanzilli G, Mangieri E, Critelli G, Gaudio C, et al. Angina in fabry disease reflects coronary small vessel disease. Circ Heart Fail 2008;1:161-69.CrossRefGoogle Scholar
  44. 44.
    Elliott PM, Kindler H, Shah JS, Sachdev B, Rimoldi OE, Thaman R, et al. Coronary microvascular dysfunction in male patients with Anderson-Fabry disease and the effect of treatment with alpha galactosidase A. Heart 2006;92:357-60.CrossRefGoogle Scholar
  45. 45.
    Kalliokoski RJ, Kalliokoski KK, Sundell J, Engblom E, Penttinen M, Kantola I, et al. Impaired myocardial perfusion reserve but preserved peripheral endothelial function in patients with Fabry disease. J Inherit Metab Dis 2005;28:563-73.CrossRefGoogle Scholar
  46. 46.
    Tomberli B, Cecchi F, Sciagra R, Berti V, Lisi F, Torricelli F, et al. Coronary microvascular dysfunction is an early feature of cardiac involvement in patients with Anderson-Fabry disease. Eur J Heart Fail 2013;15:1363-73.CrossRefGoogle Scholar
  47. 47.
    Lynch JP 3rd, Hwang J, Bradfield J, Fishbein M, Shivkumar K, Tung R. Cardiac involvement in sarcoidosis: Evolving concepts in diagnosis and treatment. Semin Respir Crit Care Med 2014;35:372-90.CrossRefGoogle Scholar
  48. 48.
    Blankstein R, Osborne M, Naya M, Waller A, Kim CK, Murthy VL, et al. Cardiac positron emission tomography enhances prognostic assessments of patients with suspected cardiac sarcoidosis. J Am Coll Cardiol 2014;63:329-36.CrossRefGoogle Scholar
  49. 49.
    Vaccarino V, Khan D, Votaw J, Faber T, Veledar E, Jones DP, et al. Inflammation is related to coronary flow reserve detected by positron emission tomography in asymptomatic male twins. J Am Coll Cardiol 2011;57:1271-79.CrossRefGoogle Scholar
  50. 50.
    Recio-Mayoral A, Rimoldi OE, Camici PG, Kaski JC. Inflammation and microvascular dysfunction in cardiac syndrome X patients without conventional risk factors for coronary artery disease. JACC Cardiovasc Imaging 2013;6:660-67.CrossRefGoogle Scholar
  51. 51.
    Recio-Mayoral A, Mason JC, Kaski JC, Rubens MB, Harari OA, Camici PG. Chronic inflammation and coronary microvascular dysfunction in patients without risk factors for coronary artery disease. Eur Heart J 2009;30:1837-43.CrossRefGoogle Scholar
  52. 52.
    Kruse MJ, Kovell L, Kasper EK, Pomper MG, Moller DR, Solnes L, et al. Myocardial Blood flow and inflammatory cardiac sarcoidosis. JACC Cardiovasc Imaging 2017;10:157-67.CrossRefGoogle Scholar
  53. 53.
    Dweck MR, Abgral R, Trivieri MG, Robson PM, Karakatsanis N, Mani V, et al. Hybrid magnetic resonance imaging and positron emission tomography with fluorodeoxyglucose to diagnose active cardiac sarcoidosis. JACC Cardiovasc Imaging 2017. doi: 10.1016/j.jcmg.2017.02.021.Google Scholar

Copyright information

© American Society of Nuclear Cardiology 2017

Authors and Affiliations

  1. 1.CNR Istituto di Bioimmagini e Fisiologia Molecolare (IBFM)SegrateItaly
  2. 2.Ospedale San Raffaele IRCCSMilanItaly

Personalised recommendations