Advertisement

Journal of Nuclear Cardiology

, Volume 24, Issue 4, pp 1239–1245 | Cite as

Multi-modality molecular imaging of aortic aneurysms

  • Brian J. MalmEmail author
  • Mehran M. Sadeghi
Molecular Imaging Corner

Abstract

Aneurysms of the thoracic and abdominal aorta are common and can be associated with significant morbidity and mortality when complications, including dissection, rupture, or thrombosis, occur. Current approaches to diagnosis and risk stratification rely on measurements of aneurysm size and rate of growth, often using various imaging modalities, which may be suboptimal in identifying patients at the highest and lowest risk of complications. Targeting the biological processes underlying aneurysm formation and expansion with molecular imaging offers an exciting opportunity to characterize aortic aneurysms beyond size and address current gaps in our approach to diagnosis and treatment. In this review, we summarize the epidemiology and biology of aortic aneurysms and highlight the role of molecular imaging in furthering our understanding of aneurysm pathogenesis and its potential future role in guiding management.

Keywords

Molecular imaging FDG aneurysm PET SPECT matrix metalloproteinases 

Abbreviations

TAA

Thoracic aortic aneurysm

AAA

Abdominal aortic aneurysm

MMPs

Matrix metalloproteinases

MR

Magnetic resonance

SPECT

Single photon emission computed tomography

PET

Positron emission tomography

CT

Computed tomography

FDG

18F-fluorodeoxyglucose

USPIO

Ultrasmall superparamagnetic particles of iron oxide

Notes

Disclosures

No conflicts of interest to disclose.

References

  1. 1.
    Verma S, Siu SC. Aortic dilatation in patients with bicuspid aortic valve. N Engl J Med. 2014;05:1920-9.CrossRefGoogle Scholar
  2. 2.
    Coady MA, Davies RR, Roberts M, Goldstein LJ, Rogalski MJ, Rizzo JA, et al. Familial patterns of thoracic aortic aneurysms. Arch Surg. 1999;4:361-7.CrossRefGoogle Scholar
  3. 3.
    Olsson CC. Thoracic aortic aneurysm and dissection: Increasing prevalence and improved outcomes reported in a nationwide population-based study of more than 14,000 cases from 1987 to 2002. Circulation. 2006;12:2611-8.CrossRefGoogle Scholar
  4. 4.
    Elefteriades JA, Farkas EA. Thoracic aortic aneurysm. Clinically pertinent controversies and uncertainties. J Am Coll Cariol. 2010;55:841-57.CrossRefGoogle Scholar
  5. 5.
    Pressler VV. Aneurysm of the thoracic aorta. Review of 260 cases. J Thorac Cardiovasc Surg. 1985;01:50-4.Google Scholar
  6. 6.
    Kent KC. Clinical practice: Abdominal aortic aneurysms. N Eng J Med. 2014;371:2101-8.CrossRefGoogle Scholar
  7. 7.
    Acosta S, Ogren M, Bengtsson H, Bergqvist D, Lindblad B, Zdanowski Z. Increasing incidence of ruptured abdominal aorta aneurysm: A population-based study. J Vasc Surg. 2006;44:237-43.CrossRefPubMedCentralGoogle Scholar
  8. 8.
    Clouse WD, Hallett JW Jr, Schaff HV, Gayari MM, Ilstrup DM, Melton LJ. Improved prognosis of thoracic aortic aneurysms: A population-based study. JAMA. 1998;12:1926-9.CrossRefGoogle Scholar
  9. 9.
    Huusko T, Salonurmi T, Taskinen P, Liinamaa J, Juvonen T, Pääkkö P, et al. Elevated messenger RNA expression and plasma protein levels of osteopontin and matrix metalloproteinase types 2 and 9 in patients with ascending aortic aneurysms. J Thorac Cardiovasc Surg. 2013;04:1117-23.CrossRefGoogle Scholar
  10. 10.
    Allaire E, Forough R, Clowes M, Starcher B, Clowes AW. Local overexpression of TIMP-1 prevents aortic aneurysm degeneration and rupture in a rat model. J Clin Investig. 1998;10:1413-20.CrossRefGoogle Scholar
  11. 11.
    El-Hamamsy I, Yacoub MH. Cellular and molecular mechanisms of thoracic aortic aneurysms. Nat Rev Cardiol. 2009;6:771-86.CrossRefGoogle Scholar
  12. 12.
    Nordon IM, Hinchliffe RJ, Loftus IM, Thompson MM. Pathophysiology and epidemiology of abdominal aortic aneurysms. Nat Rev Cardiol. 2011;8:92-102.CrossRefGoogle Scholar
  13. 13.
    ACCF, AHA, AATS, ACR, ASA, SCA, et al. Guidelines for the diagnosis and management of patients with thoracic aortic disease. J Am Coll Cariol. 2010;55(14):e27-129.CrossRefGoogle Scholar
  14. 14.
    Pape LA, Tsai TT, Isselbacher EM, Oh JK, et al. Aortic diemeter >5.5 cm is not a good predictor of type A aortic dissection- observations from the International Registry of Acute Aortic Dissection (IRAD). Circulation. 2007;116:1120-7.CrossRefGoogle Scholar
  15. 15.
    Golestani R, Sadeghi MM. Emergence of molecular imaging of aortic aneurysm: Implications for risk stratification and management. J Nucl Cardiol. 2014;21:251-67.CrossRefPubMedCentralGoogle Scholar
  16. 16.
    Nchimi A, Cheramy-Bien JP, Gasser TC, Namur G, Gomez P, Seidel L, et al. Multifactorial relationship between 18F-fluoro-deoxy-glucose positron emission tomography signaling and biomechanical properties in unruptured aortic aneurysms. Circ Cardiovasc Imaging. 2014;7:82-91.CrossRefGoogle Scholar
  17. 17.
    Kotze CW, Groves AM, Menezes LJ, Harvey R, Endozo R, Kayani IA, et al. What is the relationship between (1)F-FDG aortic aneurysm uptake on PET/CT and future growth rate? Eur J Nucl Med Mol Imaging. 2011;38:1493-9.CrossRefGoogle Scholar
  18. 18.
    Jalalzadeh H, Indrakusuma R, Planken RN, Legemate DA, Koelemay MJW, Balm R. Inflammation as a predictor of abdominal aneurysm growth and rupture: A systematic review of imaging biomarkers. Eur J Vasc Endovasc Surg. 2016;52:333-42.CrossRefGoogle Scholar
  19. 19.
    Richards JM, Semple SI, MacGillivray TJ, Gray C, Langrish JP, Williams M, et al. Abdominal aortic aneurysm growth predicted by uptake of ultrasmall superparamagnetic particles of iron oxide: A pilot study. Circ Cardiovasc Imaging. 2011;4:274-81.CrossRefGoogle Scholar
  20. 20.
    Nahrendorf M, Keliher E, Marinelli B, Leuschner F, Robbins CS, Gerszten RE, et al. Detection of macrophages in aortic aneurysms by nanoparticle positron emission tomography-computed tomography. Arterioscler Thromb Vasc Biol. 2011;31:750-7.CrossRefPubMedCentralGoogle Scholar
  21. 21.
    Toczek J, Meadows JL, Sadeghi MM. Novel molecular imaging approaches to abdominal aortic aneurysm risk stratification. Circ Cardiovasc Imaging. 2016;9:e003023.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Razavian M, Marfatia R, Mongue-Din H, Tavakoli S, Sinusas AJ, Zhang J, et al. Integrin-targeted imaging of inflammation in vascular remodeling. Arterioscler Thromb Vasc Biol. 2011;31:2820-6.CrossRefPubMedCentralGoogle Scholar
  23. 23.
    Kitagawa T, Kosuge H, Chang E, James ML, Yamamoto T, Shen B, et al. Integrin-targeted molecular imaging of experimental abdominal aortic aneurysms by 18F-FPPRGD2 positron emission tomography. Circ Cardiovasc Imaging. 2013;6:950-6.CrossRefPubMedCentralGoogle Scholar
  24. 24.
    Razavian M, Zhang J, Nie L, Tavakoli S, Razavian N, Dobrucki LW, et al. Molecular imaging of matrix metalloproteinase activation to predict murine aneurysm expansion in vivo. J Nucl Med. 2010;51:1107-15.CrossRefPubMedCentralGoogle Scholar
  25. 25.
    Golestani R, Razavian M, Nie L, Zhang J, Jung JJ, Ye Y, et al. Imaging vessel wall biology to predict outcome in abdominal aortic aneurysm. Circ Cardiovasc Imaging. 2015;8:e002471.CrossRefPubMedCentralGoogle Scholar

Copyright information

© American Society of Nuclear Cardiology 2017

Authors and Affiliations

  1. 1.Section of Cardiovascular MedicineYale University School of MedicineNew HavenUSA
  2. 2.Veterans Affairs Connecticut Healthcare SystemWest HavenUSA

Personalised recommendations