Journal of Nuclear Cardiology

, Volume 24, Issue 4, pp 1361–1369 | Cite as

Optimization of a simultaneous dual-isotope 201Tl/123I-MIBG myocardial SPECT imaging protocol with a CZT camera for trigger zone assessment after myocardial infarction for routine clinical settings: Are delayed acquisition and scatter correction necessary?

  • Emmanuel D’estanqueEmail author
  • Christophe Hedon
  • Benoît Lattuca
  • Aurélie Bourdon
  • Meriem Benkiran
  • Aurélie Verd
  • François Roubille
  • Denis Mariano-Goulart
Original Article



Dual-isotope 201Tl/123I-MIBG SPECT can assess trigger zones (dysfunctions in the autonomic nervous system located in areas of viable myocardium) that are substrate for ventricular arrhythmias after STEMI. This study evaluated the necessity of delayed acquisition and scatter correction for dual-isotope 201Tl/123I-MIBG SPECT studies with a CZT camera to identify trigger zones after revascularization in patients with STEMI in routine clinical settings.


Sixty-nine patients were prospectively enrolled after revascularization to undergo 201Tl/123I-MIBG SPECT using a CZT camera (Discovery NM 530c, GE). The first acquisition was a single thallium study (before MIBG administration); the second and the third were early and late dual-isotope studies. We compared the scatter-uncorrected and scatter-corrected (TEW method) thallium studies with the results of magnetic resonance imaging or transthoracic echography (reference standard) to diagnose myocardial necrosis.


Summed rest scores (SRS) were significantly higher in the delayed MIBG studies than the early MIBG studies. SRS and necrosis surface were significantly higher in the delayed thallium studies with scatter correction than without scatter correction, leading to less trigger zone diagnosis for the scatter-corrected studies. Compared with the scatter-uncorrected studies, the late thallium scatter-corrected studies provided the best diagnostic values for myocardial necrosis assessment.


Delayed acquisitions and scatter-corrected dual-isotope 201Tl/123I-MIBG SPECT acquisitions provide an improved evaluation of trigger zones in routine clinical settings after revascularization for STEMI.


Trigger zone MIBG myocardial infarction scatter correction cardiac SPECT 



Cadmium zinc telluride


Heart to mediastinum


Heart failure


Myocardial infarction




Maximal myocardial activity


Magnetic resonance imaging


Mean segmental activity


Sudden cardiac death


Single-photon emission computed tomography


Summed rest score


ST-elevation myocardial infarction


Triple energy window


Trigger summed score


Transthoracic echography


Ventricular arrhythmia



The authors have indicated that they have no financial conflict of interest.

Supplementary material

12350_2016_524_MOESM1_ESM.pptx (3.1 mb)
Supplementary material 1 (PPTX 1353 kb)


  1. 1.
    Matsunari I, Schricke U, Bengel FM, Haase H-U, Barthel P, Schmidt G, et al. Extent of cardiac sympathetic neuronal damage is determined by the area of ischemia in patients with acute coronary syndromes. Circulation 2000;101:2579–85.CrossRefGoogle Scholar
  2. 2.
    Bax JJ, Kraft O, Buxton AE, Fjeld JG, Pařízek P, Agostini D, et al. 123I-mIBG scintigraphy to predict inducibility of ventricular arrhythmias on cardiac electrophysiology testing a prospective multicenter pilot study. Circ Cardiovasc Imaging 2008;1:131–40.CrossRefGoogle Scholar
  3. 3.
    Gimelli A, Masci PG, Liga R, Grigoratos C, Pasanisi EM, Lombardi M, et al. Regional heterogeneity in cardiac sympathetic innervation in acute myocardial infarction: relationship with myocardial oedema on magnetic resonance. Eur J Nucl Med Mol Imaging 2014;41:1692–4.CrossRefGoogle Scholar
  4. 4.
    Gimelli A, Liga R, Giorgetti A, Genovesi D, Marzullo P. Assessment of myocardial adrenergic innervation with a solid-state dedicated cardiac cadmium-zinc-telluride camera: First clinical experience. Eur Heart J Cardiovasc Imaging 2014;15:575–85.CrossRefGoogle Scholar
  5. 5.
    Boogers MJ, Borleffs CJW, Henneman MM, van Bommel RJ, van Ramshorst J, Boersma E, et al. Cardiac sympathetic denervation assessed with 123-iodine metaiodobenzylguanidine imaging predicts ventricular arrhythmias in implantable cardioverter-defibrillator patients. J Am Coll Cardiol 2010;55:2769–77.CrossRefGoogle Scholar
  6. 6.
    Flotats A, Carrio I. Cardiac neurotransmission SPECT imaging. J Nucl Cardiol 2004;11:587–602.CrossRefGoogle Scholar
  7. 7.
    Podrid PJ, Fuchs T, Candinas R. Role of the sympathetic nervous system in the genesis of ventricular arrhythmia. Circulation 1990;82:I103–13.PubMedGoogle Scholar
  8. 8.
    Jacobson AF, Senior R, Cerqueira MD, Wong ND, Thomas GS, Lopez VA, et al. Myocardial iodine-123 meta-iodobenzylguanidine imaging and cardiac events in heart failure. J Am Coll Cardiol 2010;55:2212–21.CrossRefGoogle Scholar
  9. 9.
    Henneman M, Bengel F, Vanderwall E, Knuuti J, Bax J. Cardiac neuronal imaging: Application in the evaluation of cardiac disease. J Nucl Cardiol 2008;15:442–55.CrossRefGoogle Scholar
  10. 10.
    Flotats A, Carrió I, Agostini D, Guludec D, Marcassa C, Schaffers M, et al. Proposal for standardization of 123I-metaiodobenzylguanidine (MIBG) cardiac sympathetic imaging by the EANM Cardiovascular Committee and the European Council of Nuclear Cardiology. Eur J Nucl Med Mol Imaging 2010;37:1802–12.CrossRefGoogle Scholar
  11. 11.
    Nishisato K, Hashimoto A, Nakata T, Doi T, Yamamoto H, Nagahara D, et al. Impaired cardiac sympathetic innervation and myocardial perfusion are related to lethal arrhythmia: Quantification of cardiac tracers in patients with ICDs. J Nucl Med 2010;51:1241–9.CrossRefGoogle Scholar
  12. 12.
    Tamaki S, Yamada T, Okuyama Y, Morita T, Sanada S, Tsukamoto Y, et al. Cardiac iodine-123 metaiodobenzylguanidine imaging predicts sudden cardiac death independently of left ventricular ejection fraction in patients with chronic heart failure and left ventricular systolic dysfunction. J Am Coll Cardiol 2009;53:426–35.CrossRefGoogle Scholar
  13. 13.
    Merlet P, Valette H, Dubois-Randé JL, Moyse D, Duboc D, Dove P, et al. Prognostic value of cardiac metaiodobenzylguanidine imaging in patients with heart failure. J Nucl Med 1992;33:471–7.PubMedGoogle Scholar
  14. 14.
    Verberne HJ, Brewster LM, Somsen GA, van Eck-Smit BLF. Prognostic value of myocardial 123I-metaiodobenzylguanidine (MIBG) parameters in patients with heart failure: A systematic review. Eur Heart J 2008;29:1147–59.CrossRefGoogle Scholar
  15. 15.
    Agostini D, Carrio I, Verberne HJ. How to use myocardial 123I-MIBG scintigraphy in chronic heart failure. Eur J Nucl Med Mol Imaging 2009;36:555–9.CrossRefGoogle Scholar
  16. 16.
    Sood N, Al Badarin F, Parker M, Pullatt R, Jacobson AF, Bateman TM, et al. Resting perfusion MPI-SPECT combined with cardiac 123I-mIBG sympathetic innervation imaging improves prediction of arrhythmic events in non-ischemic cardiomyopathy patients: Sub-study from the ADMIRE-HF trial. J Nucl Cardiol 2013;20:813–20.CrossRefGoogle Scholar
  17. 17.
    Du Y, Bhattacharya M, Frey EC. Simultaneous Tc-99m/I-123 dual-radionuclide myocardial perfusion/innervation imaging using Siemens IQ-SPECT with SMARTZOOM collimator. Phys Med Biol 2014;59:2813–28.CrossRefGoogle Scholar
  18. 18.
    Esteves FP, Raggi P, Folks RD, Keidar Z, Wells Askew J, Rispler S, et al. Novel solid-state-detector dedicated cardiac camera for fast myocardial perfusion imaging: Multicenter comparison with standard dual detector cameras. J Nucl Cardiol 2009;16:927–34.CrossRefGoogle Scholar
  19. 19.
    Slomka PJ, Patton JA, Berman DS, Germano G. Advances in technical aspects of myocardial perfusion SPECT imaging. J Nucl Cardiol 2009;16:255–76.CrossRefGoogle Scholar
  20. 20.
    Ogawa K, Harata Y, Ichihara T, Kubo A, Hashimoto S. A practical method for position-dependent Compton-scatter correction in single photon emission CT. IEEE Trans Med Imaging 1991;10:408–12.CrossRefGoogle Scholar
  21. 21.
    Ichihara T, Ogawa K, Motomura N, Kubo A, Hashimoto S. Compton scatter compensation using the triple-energy window method for single- and dual-isotope SPECT. J Nucl Med 1993;34:2216–21.PubMedGoogle Scholar
  22. 22.
    Yang JT, Yamamoto K, Sadato N, Tsuchida T, Takahashi N, Hayashi N, et al. Clinical value of triple-energy window scatter correction in simultaneous dual-isotope single-photon emission tomography with 123I-BMIPP and 201Tl. Eur J Nucl Med 1997;24:1099–106.PubMedGoogle Scholar
  23. 23.
    Hesse B, Tägil K, Cuocolo A, Anagnostopoulos C, Bardiés M, Bax J, et al. EANM/ESC procedural guidelines for myocardial perfusion imaging in nuclear cardiology. Eur J Nucl Med Mol Imaging 2005;32:855–97.CrossRefGoogle Scholar
  24. 24.
    Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Int J Cardiovasc Imaging 2002;18:539–42.PubMedGoogle Scholar
  25. 25.
    Jaszczak RJ, Coleman RE, Whitehead FR. Physical factors affecting quantitative measurements using camera-based single photon emission computed tomography (Spect). IEEE Trans Nucl Sci 1981;28:69–80.CrossRefGoogle Scholar
  26. 26.
    Hendel RC, Berman DS, Cullom SJ, Follansbee W, Heller GV, Kiat H, et al. Multicenter clinical trial to evaluate the efficacy of correction for photon attenuation and scatter in SPECT myocardial perfusion imaging. Circulation 1999;99:2742–9.CrossRefGoogle Scholar
  27. 27.
    Xiao J, de Wit TC, Staelens SG, Beekman FJ. Evaluation of 3D monte carlo-based scatter correction for 99 mTc cardiac perfusion SPECT. J Nucl Med 2006;47:1662–9.PubMedGoogle Scholar
  28. 28.
    Hutton BF, Buvat I, Beekman FJ. Review and current status of SPECT scatter correction. Phys Med Biol 2011;56:R85–112.CrossRefGoogle Scholar
  29. 29.
    Xiao J, de Wit TC, Zbijewski W, Staelens SG, Beekman FJ. Evaluation of 3D Monte Carlo-based scatter correction for 201Tl cardiac perfusion SPECT. J Nucl Med 2007;48:637–44.CrossRefGoogle Scholar
  30. 30.
    Holstensson M, Erlandsson K, Poludniowski G, Ben-Haim S, Hutton BF. Model-based correction for scatter and tailing effects in simultaneous (99m)Tc and (123)I imaging for a CdZnTe cardiac SPECT camera. Phys Med Biol 2015;60:3045–63.CrossRefGoogle Scholar
  31. 31.
    Kacperski K, Erlandsson K, Ben-Haim S, Hutton BF. Iterative deconvolution of simultaneous 99m Tc and 201 Tl projection data measured on a CdZnTe-based cardiac SPECT scanner. Phys Med Biol 2011;56:1397–414.CrossRefGoogle Scholar
  32. 32.
    Pourmoghaddas A, Vanderwerf K, Ruddy TD, Wells RG. Scatter correction improves concordance in SPECT MPI with a dedicated cardiac SPECT solid-state camera. J Nucl Cardiol 2014;24:1–10.Google Scholar
  33. 33.
    Rouzet F, Chequer R, Milliner M, Hyafil F, Burg S, Mohammed Saeed D, et al. Clinical evaluation of simultaneous 123I-MIBG/201Tl imaging with cardiac CZT camera. Soc Nucl Med Annu Meet Abstr 2013;54:518.Google Scholar
  34. 34.
    Ben-Haim S, Kacperski K, Hain S, Gramberg D, Hutton BF, Erlandsson K, et al. Simultaneous dual-radionuclide myocardial perfusion imaging with a solid-state dedicated cardiac camera. Eur J Nucl Med Mol Imaging 2010;37:1710–21.CrossRefGoogle Scholar
  35. 35.
    Hartikainen J, Kuikka J, Mäntysaari M, Länsimies E, Pyörälä K. Sympathetic reinnervation after acute myocardial infarction. Am J Cardiol 1996;77:5–9.CrossRefGoogle Scholar
  36. 36.
    Carrió I, Cowie MR, Yamazaki J, Udelson J, Camici PG. Cardiac sympathetic imaging with mIBG in heart failure. JACC Cardiovasc Imaging 2010;3:92–100.CrossRefGoogle Scholar

Copyright information

© American Society of Nuclear Cardiology 2016

Authors and Affiliations

  • Emmanuel D’estanque
    • 1
    Email author
  • Christophe Hedon
    • 2
    • 3
  • Benoît Lattuca
    • 2
  • Aurélie Bourdon
    • 1
  • Meriem Benkiran
    • 1
  • Aurélie Verd
    • 1
  • François Roubille
    • 2
    • 3
  • Denis Mariano-Goulart
    • 1
    • 3
  1. 1.Nuclear Medicine DepartmentMontpellier University HospitalMontpellier Cedex 5France
  2. 2.Cardiology DepartmentMontpellier University HospitalMontpellierFrance
  3. 3.U1046 INSERM, UMR9214 CNRSMontpellier University HospitalMontpellierFrance

Personalised recommendations