Advertisement

Journal of Nuclear Cardiology

, Volume 24, Issue 4, pp 1378–1388 | Cite as

Reducing the small-heart effect in pediatric gated myocardial perfusion single-photon emission computed tomography

  • Hiroto YoneyamaEmail author
  • Kenichi Nakajima
  • Koichi Okuda
  • Shinro Matsuo
  • Masahisa Onoguchi
  • Seigo Kinuya
  • Lars Edenbrandt
Original Article

Abstract

Background

We compared two reconstruction algorisms and two cardiac functional evaluation software programs in terms of their accuracy for estimating ejection fraction (EF) of small hearts (SH).

Methods

The study group consisted of 66 pediatric patients. Data were reconstructed using a filtered back projection (FBP) method without the resolution correction (RC) and an iterative method based on an ordered subset expectation maximization (OSEM) algorithm with the RC. EF was evaluated using two software programs of quantitative gated single-photon emission computed tomography (SPECT) (QGS) and cardioREPO. We compared the EF of gated myocardial perfusion SPECT to echocardiographic measurement (Echo).

Results

Forty-eight of 66 patients had an end-systolic volume < 20 mL which was used as the criterion for being included in the SH group, and the SH effect led to an overestimation of EF. While significant differences were observed between Echo (66.9 ± 5.0%) and QGS-FBP without RC (76.9 ± 8.4%, P < .0001), QGS-OSEM with RC (76.6 ± 8.6%, P < .0001), and cardioREPO-FBP without RC (72.1 ± 10.0%, P = .0011), no significant difference was observed between Echo and cardioREPO-OSEM with RC (67.4 ± 6.1%) in SH group.

Conclusions

In pediatric gated myocardial perfusion SPECT, the SH effect can be significantly reduced when an OSEM algorithm is used with RC in combination with the specific cardioREPO algorithm.

Keywords

Ejection fraction small-heart effect resolution correction quantitative gated SPECT cardioREPO 

Abbreviations

Echo

Echocardiographic measurement

EDV

End-diastolic volume

EF

Ejection fraction

ESV

End-systolic volume

FBP

Filtered back projection

LV

Left ventricle

OSEM

Ordered subset expectation maximization

QGS

Quantitative gated SPECT

RC

Resolution correction

SH

Small heart

Notes

Acknowledgments

The authors thank all the nuclear medicine physicians at Kanazawa University Hospital for their interpretation of gated myocardial perfusion SPECT images. We are grateful to M. Tobisaka, M. Kawamura, T. Konishi, S. Hanaoka, T. Shibutani, and all the radiological technologists at Kanazawa University Hospital for providing technical support.

Compliance with ethical standards

Ethical approval

The study protocol was approved by the ethical committee of Kanazawa University Hospital.

Disclosures

Kenichi Nakajima has done a collaborative research work with FIJIFILM RI Pharma Co Ltd. (Tokyo, Japan) for the development of software programs. Lars Edenbrandt is employed by and is a shareholder of EXINI Diagnostics AB (Lund, Sweden).

Supplementary material

12350_2016_518_MOESM1_ESM.pptx (285 kb)
Supplementary Material 1 (PPTX 285 kb)

References

  1. 1.
    Taki J, Sumiya H, Higuchi T, Tsuchiya H, Takazawa K, Tomita K, et al. Prediction of myocutaneous adverse side effect due to intra-arterial chemotherapy by intra-arterial 99mTc-macroaggregated albumin administration in patients with bone and soft-tissue tumors. J Nucl Med 2002;43:1452-6.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Hesse B, Lindhardt TB, Acampa W, Anagonostopoulos C, Ballinger J, Bax JJ, et al. EANM/ESC guideline for radionuclide imaging of cardiac function. Eur J Nucl Med Mol Imaging 2008;35:851-85.CrossRefPubMedCentralGoogle Scholar
  3. 3.
    Taki J, Higuchi T, Sumiya H, Tsuchiya H, Minato H, Tomita K, et al. Prediction of final tumor response to preoperative chemotherapy by Tc-99m MIBI imaging at the middle of chemotherapy in malignant bone and soft tissue tumors: Comparison with Tl-201 imaging. J Orthop Surg Res. 2008;26:411-8.CrossRefGoogle Scholar
  4. 4.
    Nakajima K, Okuda K, Nystrom K, Richter J, Minarik D, Wakabayashi H, et al. Improved quantification of small hearts for gated myocardial perfusion imaging. Eur J Nucl Med Mol Imaging 2013;40:1163-70.CrossRefPubMedCentralGoogle Scholar
  5. 5.
    Paul AK, Nabi HA. Gated myocardial perfusion SPECT: Basic principles, technical aspects, and clinical applications. J Nucl Med Technol. 2004;32:179-87.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Hambye AS, Vervaet A, Dobbeleir A. Variability of left ventricular ejection fraction and volumes with quantitative gated SPECT: Influence of algorithm, pixel size and reconstruction parameters in small and normal-sized hearts. Eur J Nucl Med Imaging 2004;31:1606-13.CrossRefGoogle Scholar
  7. 7.
    Khalil MM, Elgazzar A, Khalil W, Omar A, Ziada G. Assessment of left ventricular ejection fraction by four different methods using 99mTc tetrofosmin gated SPECT in patients with small hearts: Correlation with gated blood pool. Nucl Med Commun. 2005;26:885-93.CrossRefPubMedCentralGoogle Scholar
  8. 8.
    Danesh-Sani SH, Zakavi SR, Oskoueian L, Kakhki VR. Comparison between 99mTc-sestamibi gated myocardial perfusion SPECT and echocardiography in assessment of left ventricular volumes and ejection fraction-effect of perfusion defect and small heart. Nucl Med Rev Cent East Eur 2014;17:70-4.CrossRefPubMedCentralGoogle Scholar
  9. 9.
    Winz OH, Meyer PT, Knollmann D, Lipke CSA, Kuhl HP, Oelve C, et al. Quantification of left ventricular volumes and ejection fraction from gated 99mTc-MIBI SPECT: MRI validation of the EXINI heart software package. Clin Physiol Funct Imaging 2009;29:89-94.CrossRefPubMedCentralGoogle Scholar
  10. 10.
    Hedeer F, Palmer J, Arheden H, Ugander M. Gated myocardial perfusion SPECT underestimates left ventricular volumes and shows high variability compared to cardiac magnetic resonance imaging—A comparison of four different commercial automated software packages. BMC Med Imaging 2010;10:10.CrossRefPubMedCentralGoogle Scholar
  11. 11.
    Kondo C, Watanabe E, Momose M, Fukushima K, Abe K, Hagiwara N, et al. In vivo validation of gated myocardial SPECT imaging for quantification of small hearts: Comparison with cardiac MRI. EJNMMI Res 2016;6:9.CrossRefPubMedCentralGoogle Scholar
  12. 12.
    Tsui BMW, Zhao XD, Gregoriou GK, Lalush DS, Frey EC, Johnston RE, et al. Quantitative cardiac SPECT reconstruction with reduced image degradation due to patient anatomy. IEEE Trans Nucl Sci 1994;41:2838-48.CrossRefGoogle Scholar
  13. 13.
    Ali I, Ruddy TD, Almgrahi A, Anstett FG, Wells RG. Half-time SPECT myocardial perfusion imaging with attenuation correction. J Nucl Med 2009;50:554-62.CrossRefGoogle Scholar
  14. 14.
    DePuey EG, Gadiraju R, Clerk J, Thompson L, Anstett F, Shwartz SC. Ordered subset expectation maximization and wide beam reconstruction “half-time” gated myocardial perfusion SPECT functional imaging: A comparison to “full-time” filtered backprojection. J Nucl Cardiol 2008;15:547-63.CrossRefGoogle Scholar
  15. 15.
    Enevoldsen LH, Menashi CA, Andersen UB, Jensen LT, Henriksen OM. Effects of acquisition time and reconstruction algorithm on image quality, quantitative parameters, and clinical interpretation of myocardial perfusion imaging. J Nucl Cardiol 2013;20:1086-92.CrossRefGoogle Scholar
  16. 16.
    Venero CV, Heller GV, Bateman TM, McGhie AI, Ahlberg AW, Katten D, et al. A multicenter evaluation of a new post-processing method with depth-dependent collimator resolution applied to full-time and half-time acquisitions without and with simultaneously acquired attenuation correction. J Nucl Cardiol 2009;16:714-25.CrossRefGoogle Scholar
  17. 17.
    Teichholz LE, Kreulen T, Herman MV, Gorlin R. Problems in echocardiographic volume determinations: Echocardiographic-angiographic correlations in the presence or absence of asynergy. Am J Cardiol 1976;37:7-11.CrossRefGoogle Scholar
  18. 18.
    Kihara Y, Takenaka K, Hayashi T, Akaishi M, Ito H, Ishizuka N, et al. Standard measurement of cardiac function indexes. Jpn J Med Ultrasonics 2006;33:371-81.Google Scholar
  19. 19.
    Lomsky M, Richter J, Johansson L, El-Ali H, Astrom K, Ljungberg M, et al. A new automated method for analysis of gated-SPECT images based on a three-dimensional heart shaped model. Clin Physiol Funct Imaging 2005;25:234-40.CrossRefGoogle Scholar
  20. 20.
    Miwa S, Shirai T, Taki J, Sumiya H, Nishida H, Hayashi K, et al. Use of 99mTc-MIBI scintigraphy in the evaluation of the response to chemotherapy for osteosarcoma: Comparison with 201Tl scintigraphy and angiography. Int J Clin Oncol 2011;16:373-8.CrossRefPubMedCentralGoogle Scholar
  21. 21.
    Miwa S, Taki J, Yamamoto N, Shirai T, Nishida H, Hayashi K, et al. A novel combined radiological method for evaluation of the response to chemotherapy for primary bone sarcoma. J Surg Oncol 2012;106:273-9.CrossRefPubMedCentralGoogle Scholar
  22. 22.
    Miwa S, Takeuchi A, Shirai T, Taki J, Yamamoto N, Nishida H, et al. Prognostic value of radiological response to chemotherapy in patients with osteosarcoma. PLoS One 2013;8:e70015.CrossRefPubMedCentralGoogle Scholar
  23. 23.
    Nakajima K, Nishimura T. Inter-institution preference-based variability of ejection fraction and volumes using quantitative gated SPECT with 99mTc-tetrofosmin: A multicentre study involving 106 hospitals. Eur J Nucl Med Mol Imaging 2006;33:127-33.CrossRefPubMedCentralGoogle Scholar
  24. 24.
    Nichols K, De Puey EG, Krasnow N, Lefkowitz D, Rozanski A. Reliability of enhanced gated SPECT in assessing wall motion of severely hypoperfused myocardium: Echocardiographic validation. J Nucl Cardiol 1998;5:387-94.CrossRefPubMedCentralGoogle Scholar
  25. 25.
    Cwajg E, Cwajg J, He ZX, Hwang WS, Keng F, Nagueh SF, et al. Gated myocardial perfusion tomography for the assessment of left ventricular function and volumes: Comparison with echocardiography. J Nucl Med 1999;40:1857-65.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Vourvouri EC, Poldermans D, Bax JJ, Sianos G, Sozzi FB, Schinkel AF, et al. Evaluation of left ventricular function and volumes in patients with ischaemic cardiomyopathy: Gated single-photon emission computed tomography versus two-dimensional echocardiography. Eur J Nucl Med 2001;28:1610-5.CrossRefPubMedCentralGoogle Scholar
  27. 27.
    Nakajima K, Kusuoka H, Nishimura S, Yamashina A, Nishimura T. Normal limits of ejection fraction and volumes determined by gated SPECT in clinically normal patients without cardiac events: A study based on the J-ACCESS database. Eur J Nucl Med Mol Imaging 2007;34:1088-96.CrossRefGoogle Scholar
  28. 28.
    Nakajima K, Higuchi T, Taki J, Kawano M, Tonami N. Accuracy of ventricular volume and ejection fraction measured by gated myocardial SPECT: Comparison of 4 software programs. J Nucl Med 2001;42:1571-8.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Nishimura T, Nakajima K, Kusuoka H, Yamashina A, Nishimura S. Prognostic study of risk stratification among Japanese patients with ischemic heart disease using gated myocardial perfusion SPECT: J-ACCESS study. Eur J Nucl Med Mol Imaging 2008;35:319-28.CrossRefGoogle Scholar
  30. 30.
    Takahashi Y, Miyagawa M, Nishiyama Y, Ishimura H, Mochizuki T. Performance of a semiconductor SPECT system: Comparison with a conventional Anger-type SPECT instrument. Ann Nucl Med 2013;27:11-6.CrossRefGoogle Scholar
  31. 31.
    Herzog BA, Buechel RR, Katz R, Brueckner M, Husmann L, Burger IA, et al. Nuclear myocardial perfusion imaging with a cadmium-zinc-telluride detector technique: Optimized protocol for scan time reduction. Eur J Nucl Med Mol Imaging 2010;51:46-51.Google Scholar
  32. 32.
    Buechel RR, Herzog BA, Husmann L, Burger IA, Pazhenkottil AP, Treyer V, et al. Ultrafast nuclear myocardial perfusion imaging on a new gamma camera with semiconductor detector technique: First clinical validation. Eur J Nucl Med Mol Imaging 2010;37:773-8.CrossRefGoogle Scholar
  33. 33.
    Yoneyama H, Tsushima H, Kobayashi M, Onoguchi M, Nakajima K, Kinuya S. Improved detection of sentinel lymph nodes in SPECT/CT images acquired using a low-to medium-energy general-purpose collimator. Clin Nucl Med 2014;39:e1-6.CrossRefGoogle Scholar
  34. 34.
    Liow JS, Strother SC. The convergence of object dependent resolution in maximum likelihood based tomographic image reconstruction. Phys Med Biol 1993;38:55-70.CrossRefGoogle Scholar
  35. 35.
    Liow JS, Strother SC. The convergence of object dependent resolution in maximum likelihood based tomographic image reconstruction. Phys Med Biol 1993;38:55-70.CrossRefGoogle Scholar
  36. 36.
    Nuyts J, Dupont P, Van den Maegdenbergh V, Vleugels S, Suetens P, Mortelmans L. A study of the liver-heart artifact in emission tomography. J Nucl Med 1995;36:133-9.PubMedGoogle Scholar
  37. 37.
    Nakajima K, Taki J, Higuchi T, Kawano M, Taniguchi M, Maruhashi K, et al. Gated SPECT quantification of small hearts: Mathematical simulation and clinical application. Eur J Nucl Med Mol Imaging 2000;27:1372-9.CrossRefGoogle Scholar
  38. 38.
    Okuda K, Nakajima K, Yamada M, Wakabayashi H, Ichikawa H, Arai H, et al. Optimization of iterative reconstruction parameters with attenuation correction, scatter correction and resolution recovery in myocardial perfusion SPECT/CT. Ann Nucl Med 2014;28:60-8.CrossRefGoogle Scholar
  39. 39.
    Hesse B, Tagil K, Cuocolo A, Anagnostopoulos C, Bardies M, Bax J, et al. EANM/ESC procedural guidelines for myocardial perfusion imaging in nuclear cardiology. Eur J Nucl Med Mol Imaging 2005;32:855-97.CrossRefGoogle Scholar
  40. 40.
    Nakajima K, Okuda K, Kawano M, Matsuo S, Slomka P, Germano G, et al. The importance of population-specific normal database for quantification of myocardial ischemia: Comparison between Japanese 360 and 180-degree databases and a US database. J Nucl Cardiol 2009;16:422-30.CrossRefPubMedCentralGoogle Scholar
  41. 41.
    Coleman RE, Jaszczak RJ, Cobb FR. Comparison of 180 degrees and 360 degrees data collection in thallium-201 imaging using single-photon emission computerized tomography (SPECT): Concise communication. J Nucl Med 1982;23:655-60.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Tamaki N, Mukai T, Ishii Y, Fujita T, Yamamoto K, Minato K, et al. Comparative study of thallium emission myocardial tomography with 180 degrees and 360 degrees data collection. J Nucl Med 1982;23:661-6.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Maublant JC, Peycelon P, Kwiatkowski F, Lusson JR, Standke RH, Veyre A. Comparison between 180 degrees and 360 degrees data collection in technetium-99m MIBI SPECT of the myocardium. J Nucl Med 1989;30:295-300.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Koizumi K, Masaki H, Matsuda H, Uchiyama M, Okuno M, Oguma E, et al. Japanese consensus guidelines for pediatric nuclear medicine. Ann Nucl Med 2014;28:498-503.CrossRefPubMedCentralGoogle Scholar
  45. 45.
    Fahey FH, Treves ST, Adelstein SJ. Minimizing and communicating radiation risk in pediatric nuclear medicine. J Nucl Med 2011;52:1240-51.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Zanzonico P. Virtual reality for dose optimization in pediatric nuclear medicine: Better than the real thing. J Nucl Med 2011;52:1845-7.CrossRefPubMedCentralGoogle Scholar
  47. 47.
    Lassmann M, Biassoni L, Monsieurs M, Franzius C, Jacobs F. The new EANM paediatric dosage card. Eur J Nucl Med Imaging 2007;34:796-8.CrossRefGoogle Scholar
  48. 48.
    Jacobs F, Thierens H, Piepsz A, Bacher K, Van de Wiele C, Ham H, et al. Optimised tracer-dependent dosage cards to obtain weight-independent effective doses. Eur J Nucl Med Imaging 2005;32:581-8.CrossRefGoogle Scholar

Copyright information

© American Society of Nuclear Cardiology 2016

Authors and Affiliations

  • Hiroto Yoneyama
    • 1
    Email author
  • Kenichi Nakajima
    • 2
  • Koichi Okuda
    • 3
  • Shinro Matsuo
    • 2
  • Masahisa Onoguchi
    • 4
  • Seigo Kinuya
    • 2
  • Lars Edenbrandt
    • 5
  1. 1.Department of Radiological TechnologyKanazawa University HospitalKanazawaJapan
  2. 2.Department of Nuclear MedicineKanazawa University HospitalKanazawaJapan
  3. 3.Department of PhysicsKanazawa Medical UniversityKanazawaJapan
  4. 4.Department of Health Science, Graduate School of Medical ScienceKanazawa UniversityKanazawaJapan
  5. 5.Department of Molecular and Clinical MedicineUniversity of GothenburgGothenburgSweden

Personalised recommendations