Journal of Nuclear Cardiology

, Volume 24, Issue 4, pp 1161–1170 | Cite as

The high matrix acquisition technique for imaging of atherosclerotic plaque inflammation in fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography with time-of-flight: Phantom study

  • Masaya SudaEmail author
  • Tomonari Kiriyama
  • Keiichi Ishihara
  • Masahisa Onoguchi
  • Yasuhiro Kobayashi
  • Minoru Sakurai
  • Takayuki Shibutani
  • Shin-ichiro Kumita
Original Article



Motion artifact and partial volume effect caused underestimation of coronary plaque inflammation. This study evaluated the high matrix acquisition technique using time-of-flight (TOF) positron emission tomography/computed tomography for imaging of atherosclerotic plaque inflammation with fluorine-18 fluorodeoxyglucose in small and moving phantoms.

Methods and Results

All images were reconstructed using a conventional algorithm without TOF (4 × 4 × 4 mm3 voxel size) and a high matrix algorithm with TOF (2 × 2 × 2 mm3 voxel size). Microsphere phantoms of 10, 7.9, 6.2, 5.0, and 4.0 mm diameters were acquired in 3-dimensional list-mode for 30 minutes. A heart phantom mimicking cardiac motion consisted of a hot spot simulating a plaque (φ 4 mm, φ 2 mm) on the outside of the left ventricle. In the microsphere and heart phantom study, visual discrimination, maximum activity, and target-to-background ratio using the high matrix algorithm with TOF were better than those using the conventional algorithm without TOF.


The high matrix algorithm with TOF improves detection of small targets in phantoms.


Plaque imaging atherosclerotic plaque inflammation 18F-fluorodeoxyglucose positron emission tomography time-of-flight 



Fluorine-18 fluorodeoxyglucose


Signal-to-noise ratio




Partial volume effect


Line of response


Target-to-background ratio




Recovery coefficient



The authors have no conflict of interest to disclose with respect to this paper.

Supplementary material

12350_2016_510_MOESM1_ESM.pptx (1.8 mb)
Supplementary Material 1 (PPTX 1850 kb)


  1. 1.
    Fruchart JC, Nierman MC, Stroes ES, Kastelein JJ, Duriez P. New risk factors for atherosclerosis and patient risk assessment. Circulation 2004;109:15–9.CrossRefGoogle Scholar
  2. 2.
    Libby P, Ridker PM, Maseri A. Inflammation and atherosclerosis. Circulation 2002;105:1135–43.CrossRefGoogle Scholar
  3. 3.
    Quillard T, Libby P. Molecular imaging of atherosclerosis for improving diagnostic and therapeutic development. Circ Res 2012;111:231–44.CrossRefGoogle Scholar
  4. 4.
    Townsend DW, Cherry SR. Combining anatomy and function: The path to true image fusion. Eur Radiol 2001;11:1968–74.CrossRefGoogle Scholar
  5. 5.
    Joshi NV, Vesey AT, Williams MC, Shah AS, Calvert PA, Craighead FH, et al. 18F-fluoride positron emission tomography for identification of ruptured and high-risk coronary atherosclerotic plaques: A prospective clinical trial. Lancet 2014;383:705–13.CrossRefGoogle Scholar
  6. 6.
    Surti S, Scheuermann J, Fakhri G, Daube-Witherspoon ME, Lim R, Abi-Hatem N, et al. Impact of time-of-flight PET on whole-body oncologic studies: A human observer lesion detection and localization study. J Nucl Med 2011;52:712–9.CrossRefGoogle Scholar
  7. 7.
    Budinger TF. Time-of-flight positron emission tomography: Status relative to conventional PET. J Nucl Med 1983;24:73–8.PubMedGoogle Scholar
  8. 8.
    Karp JS, Surti S, Daube-Witherspoon ME, Muehllehner G. Benefit of time-of-flight in PET: Experimental and clinical results. J Nucl Med 2008;49:462–70.CrossRefGoogle Scholar
  9. 9.
    Kobayashi Y, Kumita S, Fukushima Y, Ishihara K, Suda M, Sakurai M. Significant suppression of myocardial 18F-fluorodeoxyglucose uptake using 24-h carbohydrate restriction and a low-carbohydrate, high-fat diet. J Cardiol 2012;62:314–9.CrossRefGoogle Scholar
  10. 10.
    Fayad ZA, Mani V, Woodward M, Kallend D, Abt M, Burgess T, et al. Safety and efficacy of dalcetrapib on atherosclerotic disease using novel non-invasive multimodality imaging (dal-plaque): A randomised clinical trial. Lancet 2011;378:1547–59.CrossRefGoogle Scholar
  11. 11.
    Dunphy MP, Freiman A, Larson SM, Strauss HW. Association of vascular 18F-FDG uptake with vascular calcification. J Nucl Med 2005;46:1278–84.PubMedGoogle Scholar
  12. 12.
    Rogers IS, Nasir K, Figueroa AL, Cury RC, Hoffmann U, Vermylen DA, et al. Feasibility of FDG imaging of the coronary arteries: Comparison between acute coronary syndrome and stable angina. JACC Cardiovasc Imaging 2010;3:388–97.CrossRefGoogle Scholar
  13. 13.
    Suzuki Y, Slmoka P, Wolak A, Ohba M, Suzuki S, Yang LD, et al. Motion-frozen myocardial perfusion SPECT improves detection of coronary artery disease in obese patients. J Nucl Med 2008;49:1075–9.CrossRefGoogle Scholar
  14. 14.
    Srinivas S, Dhurairaj T, Basu S, Bural G, Surti S, Alavi A. A recovery coefficient method for partial volume correction of PET images. Ann Nucl Med 2009;23:341–8.CrossRefGoogle Scholar
  15. 15.
    Tahara N, Kai H, Yamagishi S, Mizoguchi M, Nakaura H, Ishibashi M, et al. Vascular inflammation evaluated by [18F]-fluorodeoxyglucose positron emission tomography is associated with the metabolic syndrome. J Am Coll Cardiol 2007;49:1533–9.CrossRefGoogle Scholar
  16. 16.
    Myers KS, Rudd JH, Hailman EP, Bolognese JA, Burke J, Pinto CA, et al. Correlation between arterial FDG uptake and biomarkers in peripheral artery disease. JACC Cardiovasc Imaging 2012;5:38–45.CrossRefGoogle Scholar
  17. 17.
    Rudd JH, Myers KS, Bansilal S, Machac J, Woodward M, Fuster V, et al. Relationships among regional arterial inflammation, calcification, risk factors, and biomarkers: A prospective fluorodeoxyglucose positron-emission tomography/computed tomography imaging study. Circ Cardiovasc Imaging 2009;2:107–15.CrossRefGoogle Scholar
  18. 18.
    Wu YW, Kao HL, Chen MF, Lee BC, Tseng WY, Jeng JS, et al. Characterization of plaques using 18F-FDG PET/CT in patients with carotid atherosclerosis and correlation with matrix metalloproteinase-1. J Nucl Med 2007;48:227–33.PubMedGoogle Scholar
  19. 19.
    Noh TS, Moon SH, Cho YS, Hong SP, Lee EJ, Choi JY, et al. Relation of carotid artery 18F-FDG uptake to C-reactive protein and Framingham risk score in a large cohort of asymptomatic adults. J Nucl Med 2013;54:2070–6.CrossRefGoogle Scholar
  20. 20.
    Tahara N, Kai H, Ishibashi M, Nakaura H, Kaida H, Baba K, et al. Simvastatin attenuates plaque inflammation: Evaluation by fluorodeoxyglucose positron emission tomography. J Am Coll Cardiol 2006;48:1825–31.CrossRefGoogle Scholar
  21. 21.
    Mizoguchi M, Tahara N, Tahara A, Nitta Y, Kodama N, Oba T, et al. Pioglitazone attenuates atherosclerotic plaque inflammation in patients with impaired glucose tolerance or diabetes a prospective, randomized, comparator-controlled study using serial FDG PET/CT imaging study of carotid artery and ascending aorta. JACC Cardiovasc Imaging 2011;4:1110–8.CrossRefGoogle Scholar
  22. 22.
    Vancraeynest D, Pasquet A, Roelants V, Gerber BL, Vanoverschelde JL. Imaging the vulnerable plaque. J Am Coll Cardiol 2011;57:1961–79.CrossRefGoogle Scholar

Copyright information

© American Society of Nuclear Cardiology 2016

Authors and Affiliations

  • Masaya Suda
    • 1
    Email author
  • Tomonari Kiriyama
    • 2
  • Keiichi Ishihara
    • 1
  • Masahisa Onoguchi
    • 3
  • Yasuhiro Kobayashi
    • 2
  • Minoru Sakurai
    • 1
  • Takayuki Shibutani
    • 3
  • Shin-ichiro Kumita
    • 2
  1. 1.Clinical Imaging Center for HealthcareNippon Medical SchoolTokyoJapan
  2. 2.Department of RadiologyNippon Medical SchoolTokyoJapan
  3. 3.Department of Quantum Medical TechnologyKanazawa UniversityKanazawaJapan

Personalised recommendations