Journal of Nuclear Cardiology

, Volume 24, Issue 4, pp 1226–1235 | Cite as

Sex affects myocardial blood flow and fatty acid substrate metabolism in humans with nonischemic heart failure

  • Ana Kadkhodayan
  • C. Huie Lin
  • Andrew R. Coggan
  • Zulfia Kisrieva-Ware
  • Kenneth B. Schechtman
  • Eric Novak
  • Susan M. Joseph
  • Víctor G. Dávila-Román
  • Robert J. Gropler
  • Carmen Dence
  • Linda R. PetersonEmail author
Original Article



In animal models of heart failure (HF), myocardial metabolism shifts from high-energy fatty acid (FA) metabolism toward glucose. However, FA (vs glucose) metabolism generates more ATP/mole; thus, FA metabolism may be especially advantageous in HF. Sex modulates myocardial blood flow (MBF) and substrate metabolism in normal humans. Whether sex affects MBF and metabolism in patients with HF is unknown.

Methods and Results

We studied 19 well-matched men and women with nonischemic HF (EF ≤ 35%). MBF and myocardial substrate metabolism were quantified using positron emission tomography. Women had higher MBF (mL/g/minute), FA uptake (mL/g/minute), and FA utilization (nmol/g/minute) (P < 0.005, P < 0.005, P < 0.05, respectively) and trended toward having higher FA oxidation than men (P = 0.09). These findings were independent of age, obesity, and insulin resistance. There were no sex-related differences in fasting myocardial glucose uptake or metabolism. Higher MBF was related to improved event-free survival (HR 0.31, P = 0.02).


In nonischemic HF, women have higher MBF and FA uptake and metabolism than men, irrespective of age, obesity, or insulin resistance. Moreover, higher MBF portends a better prognosis. These sex-related differences should be taken into account in the development and targeting of novel agents aimed at modulating MBF and metabolism in HF.


Sex myocardial perfusion imaging: PET fatty acid imaging heart failure metabolism: PET 



Heart failure


Fatty acid


Adenosine triphosphate


Myocardial blood flow


Positron emission tomography


Extracorporeal membrane oxygenation


Homeostasis model assessment of insulin resistance


Body surface area



The authors wish to thank the study subjects for their participation, Douglas L. Mann, MD and Kitty O’Callaghan for editorial assistance, and Ava Ysaguirre for assistance with manuscript preparation. We also wish to thank Karen Gillis Taylor for graciously allowing us to use her artwork on our recruitment flyers and posters.

Funding sources

This study was supported by Barnes-Jewish Hospital Foundation Grant (St. Louis, Missouri); American Society of Nuclear Cardiology (Bethesda, Maryland), Mentors in Medicine Grant (St. Louis, Missouri); and the National Institutes of Health (Bethesda, Maryland): UL1TR000448 (ICTS), and P30-DK020579 (DRTC), R01HL58878.


The authors have nothing to disclose related to this work.

Supplementary material

12350_2016_467_MOESM1_ESM.pptx (5.8 mb)
Supplementary material 1 (PPTX 5984 kb)


  1. 1.
    Levy D, Kenchaiah S, Larson MG, et al. Long-term trends in the incidence of and survival with heart failure. N Engl J Med 2002;347:1397-402.CrossRefGoogle Scholar
  2. 2.
    Lund LH, Mancini D. Heart failure in women. Med Clin N Am 2004;88:1321-45 xii.CrossRefGoogle Scholar
  3. 3.
    Kimmelstiel C, Goldberg RJ. Congestive heart failure in women: Focus on heart failure due to coronary artery disease and diabetes. Cardiology 1990;77:71-9.CrossRefGoogle Scholar
  4. 4.
    Kadkhodayan A, Coggan AR, Peterson LR. A “PET” area of interest: Myocardial metabolism in human systolic heart failure. Heart Fail Rev 2013;18:567-74.CrossRefPubMedCentralGoogle Scholar
  5. 5.
    Neglia D, De Caterina A, Marraccini P, et al. Impaired myocardial metabolic reserve and substrate selection flexibility during stress in patients with idiopathic dilated cardiomyopathy. Am J Physiol Heart Circ Physiol 2007;293:H3270-8.CrossRefGoogle Scholar
  6. 6.
    Taegtmeyer H, Wilson CR, Razeghi P, Sharma S. Metabolic energetics and genetics in the heart. Ann N Y Acad Sci 2005;1047:208-18.CrossRefGoogle Scholar
  7. 7.
    Peterson LR, Herrero P, McGill J, et al. Fatty acids and insulin modulate myocardial substrate metabolism in humans with type 1 diabetes. Diabetes 2008;57:32-40.CrossRefGoogle Scholar
  8. 8.
    Young ME. Circadian rhythms in cardiac gene expression. Curr Hypertens Rep 2003;5:445-53.CrossRefGoogle Scholar
  9. 9.
    Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985;28:412-9.CrossRefGoogle Scholar
  10. 10.
    Peterson LR, Soto PF, Herrero P, Schechtman KB, Dence C, Gropler RJ. Sex differences in myocardial oxygen and glucose metabolism. J Nucl Cardiol 2007;14:573-81.CrossRefPubMedCentralGoogle Scholar
  11. 11.
    Herrero P, Kisrieva-Ware Z, Dence CS, et al. PET measurements of myocardial glucose metabolism with 1-11C-glucose and kinetic modeling. J Nucl Med 2007;48:955-64.CrossRefGoogle Scholar
  12. 12.
    Bergmann SR, Weinheimer CJ, Markham J, Herrero P. Quantitation of myocardial fatty acid metabolism using PET. J Nucl Med 1996;37:1723-30.PubMedGoogle Scholar
  13. 13.
    de Simone G, Devereux RB, Daniels SR, et al. Stroke volume and cardiac output in normotensive children and adults. Assessment of relations with body size and impact of overweight. Circulation 1997;95:1837-43.CrossRefGoogle Scholar
  14. 14.
    Herrero P, Soto PF, Dence CS, et al. Impact of hormone replacement on myocardial fatty acid metabolism: Potential role of estrogen. J Nucl Cardiol 2005;12:574-81.CrossRefGoogle Scholar
  15. 15.
    Kaufmann PA, Rimoldi O, Gnecchi-Ruscone T, Bonser RS, Lüscher TF, Camici PG. Systemic inhibition of nitric oxide synthase unmasks neural constraint of maximal myocardial blood flow in humans. Circulation 2004;110:1431-6.CrossRefGoogle Scholar
  16. 16.
    Peterson LR, Soto PF, Herrero P, et al. Impact of gender on the myocardial metabolic response to obesity. JACC Cardiovasc Imaging 2008;1:424-33.CrossRefPubMedCentralGoogle Scholar
  17. 17.
    Peterson LR, Saeed IM, McGill JB, et al. Sex and type 2 diabetes: Obesity-independent effects on left ventricular substrate metabolism and relaxation in humans. Obesity 2012;20:802-10.CrossRefGoogle Scholar
  18. 18.
    Davila-Roman VG, Vedala G, Herrero P, et al. Altered myocardial fatty acid and glucose metabolism in idiopathic dilated cardiomyopathy. J Am Coll Cardiol 2002;40:271-7.CrossRefGoogle Scholar
  19. 19.
    Tuunanen H, Engblom E, Naum A, et al. Decreased myocardial free fatty acid uptake in patients with idiopathic dilated cardiomyopathy: Evidence of relationship with insulin resistance and left ventricular dysfunction. J Card Fail 2006;12:644-52.CrossRefGoogle Scholar
  20. 20.
    Neglia D, Michelassi C, Trivieri MG, et al. Prognostic role of myocardial blood flow impairment in idiopathic left ventricular dysfunction. Circulation 2002;105:186-93.CrossRefPubMedCentralGoogle Scholar
  21. 21.
    Bauersachs J, Schafer A. Endothelial dysfunction in heart failure: Mechanisms and therapeutic approaches. Curr Vasc Pharmacol 2004;2:115-24.CrossRefPubMedCentralGoogle Scholar
  22. 22.
    Koh KK, Cardillo C, Bui MN, et al. Vascular effects of estrogen and cholesterol-lowering therapies in hypercholesterolemic postmenopausal women. Circulation 1999;99:354-60.CrossRefPubMedCentralGoogle Scholar
  23. 23.
    Peterson LR, Eyster D, Davila-Roman VG, et al. Short-term oral estrogen replacement therapy does not augment endothelium-independent myocardial perfusion in postmenopausal women. Am Heart J 2001;142:641-7.CrossRefPubMedCentralGoogle Scholar
  24. 24.
    Regitz-Zagrosek V, Oertelt-Prigione S, Seeland U, Hetzer R. Sex and gender differences in myocardial hypertrophy and heart failure. Circ J 2010;74:1265-73.CrossRefPubMedCentralGoogle Scholar
  25. 25.
    Herrero P, Kim J, Sharp TL, et al. Assessment of myocardial blood flow using 15O-water and 1-11C-acetate in rats with small-animal PET. J Nucl Med 2006;47:477-85.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Blaak E. Gender differences in fat metabolism. Curr Opin Clin Nutr Metab Care 2001;4:499-502.CrossRefPubMedCentralGoogle Scholar
  27. 27.
    Kiens B, Roepstorff C, Glatz JF, et al. Lipid-binding proteins and lipoprotein lipase activity in human skeletal muscle: Influence of physical activity and gender. J Appl Physiol 1985;2004:1209-18.Google Scholar
  28. 28.
    Nielsen S, Guo Z, Albu JB, Klein S, O’Brien PC, Jensen MD. Energy expenditure, sex, and endogenous fuel availability in humans. J Clin Invest 2003;111:981-8.CrossRefPubMedCentralGoogle Scholar
  29. 29.
    Mittendorfer B. Sexual dimorphism in human lipid metabolism. J Nutr 2005;135:681-6.CrossRefGoogle Scholar
  30. 30.
    Tuunanen H, Engblom E, Naum A, et al. Free fatty acid depletion acutely decreases cardiac work and efficiency in cardiomyopathic heart failure. Circulation 2006;114:2130-7.CrossRefGoogle Scholar
  31. 31.
    Kolwicz SCJ, Olson DP, Marney LC, Garcia-Menendez L, Synovec RE, Tian R. Cardiac-specific deletion of acetyl CoA carboxylase 2 prevents metabolic remodeling during pressure-overload hypertrophy. Circ Res 2012;111:728-38.CrossRefPubMedCentralGoogle Scholar
  32. 32.
    He L, Kim T, Long Q, et al. Carnitine palmitoyltransferase-1b deficiency aggravates pressure overload-induced cardiac hypertrophy caused by lipotoxicity. Circulation 2012;126:1705-16.CrossRefPubMedCentralGoogle Scholar
  33. 33.
    Gao D, Ning N, Niu X, Hao G, Meng Z. Trimetazidine: A meta-analysis of randomised controlled trials in heart failure. Heart 2011;97:278-86.CrossRefGoogle Scholar

Copyright information

© American Society of Nuclear Cardiology 2016

Authors and Affiliations

  • Ana Kadkhodayan
    • 1
    • 2
  • C. Huie Lin
    • 3
    • 4
  • Andrew R. Coggan
    • 5
  • Zulfia Kisrieva-Ware
    • 5
  • Kenneth B. Schechtman
    • 6
  • Eric Novak
    • 3
  • Susan M. Joseph
    • 3
  • Víctor G. Dávila-Román
    • 3
  • Robert J. Gropler
    • 5
  • Carmen Dence
    • 5
  • Linda R. Peterson
    • 3
    Email author
  1. 1.Department of MedicineWashington University School of MedicineSt. LouisUSA
  2. 2.Cardiovascular Division, Department of MedicineMayo ClinicRochesterUSA
  3. 3.Cardiovascular Division, Department of MedicineWashington University School of MedicineSt. LouisUSA
  4. 4.Debakey Cardiovascular AssociatesHouston Methodist HospitalHoustonUSA
  5. 5.Mallinckrodt Institute of RadiologyWashington University School of MedicineSt. LouisUSA
  6. 6.Division of BiostatisticsWashington University School of MedicineSt. LouisUSA

Personalised recommendations