Skip to main content

Advertisement

Log in

Accuracy of low-dose rubidium-82 myocardial perfusion imaging for detection of coronary artery disease using 3D PET and normal database interpretation

  • Original Article
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Background

Our aim was to develop a normal database to be used for quantification of myocardial perfusion and diagnosis of “obstructive coronary artery disease” (CAD) using low-dose rubidium-82 three-dimensional (3D) positron emission tomography (PET)-CT.

Methods

From a record of 1,501 patients, 77 were identified as having low-likelihood (LLK) of CAD. Forty LLK patients were used to construct a normal database using 4DM-PET, the remainder used for validation of normalcy. A group of 70 patients with CAD who had invasive coronary angiography and PET-CT were used to evaluate the accuracy of the database for detecting CAD using the sum-stress-score. The effect of clinical exclusion criteria and the inclusion of LLK patients were evaluated.

Results

The normal database for CAD detection had a normalcy rate of 95%. Sensitivity was 100% for detecting patients with either 50% or 70% stenosis. Optimal specificity was 87% for either 50% or 70% stenosis. For localizing disease at 50% stenosis in the left anterior descending, left circumflex, and right coronary artery, sensitivity ranged from 59% to 68%, while specificity was maintained at 87-89%. Similarly, at 70% stenosis, sensitivity ranged from 64% to 79%, and specificity from 87% to 91%.

Conclusions

A normal database containing the relative perfusion scores of patients with LLK of CAD can be used to accurately diagnose obstructive coronary disease using low-dose Rb-82 with 3D PET-CT imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Bateman TM, Heller GV, McGhie AI, Friedman JD, Case JA, Bryngelson JR, et al. Diagnostic accuracy of rest/stress ECG-gated Rb-82 myocardial perfusion PET: Comparison with ECG-gated Tc-99m sestamibi SPECT. J Nucl Cardiol 2006;13:24-33.

    Article  PubMed  Google Scholar 

  2. Santana CA, Folks RD, Garcia EV, Verdes L, Sanyal R, Hainer J, et al. Quantitative (82)Rb PET/CT: Development and validation of myocardial perfusion database. J Nucl Med 2007;48:1122-8.

    Article  PubMed  Google Scholar 

  3. Esteves FP, Nye JA, Khan A, Folks RD, Halkar RK, Garcia EV, et al. Prompt-gamma compensation in Rb-82 myocardial perfusion 3D PET/CT. J Nucl Cardiol 2010;17:247-53.

    Article  PubMed  Google Scholar 

  4. Sampson UK, Dorbala S, Limaye A, Kwong R, Di Carli MF. Diagnostic accuracy of rubidium-82 myocardial perfusion imaging with hybrid positron emission tomography/computed tomography in the detection of coronary artery disease. J Am Coll Cardiol 2007;49:1052-8.

    Article  PubMed  CAS  Google Scholar 

  5. Marwick TH, Shan K, Patel S, Go RT, Lauer MS. Incremental value of rubidium-82 positron emission tomography for prognostic assessment of known or suspected coronary artery disease. Am J Cardiol 1997;80:865-70.

    Article  PubMed  CAS  Google Scholar 

  6. Nakazato R, Berman DS, Dey D, Le Meunier L, Hayes SW, Fermin JS, et al. Automated quantitative Rb-82 3D PET/CT myocardial perfusion imaging: Normal limits and correlation with invasive coronary angiography. J Nucl Cardiol 2011; doi:10.1007/s12350-011-9496-3.

  7. Schepis T, Gaemperli O, Treyer V, Valenta I, Burger C, Koepfli P, et al. Absolute quantification of myocardial blood flow with 13N-ammonia and 3-dimensional PET. J Nucl Med 2007;48:1783-9.

    Article  PubMed  CAS  Google Scholar 

  8. Knesaurek K, Machac J, Krynyckyi B, Almeida O. Comparison of 2-dimensional and 3-dimensional 82Rb myocardial perfusion PET imaging. J Nucl Med 2003;44:1350-6.

    PubMed  Google Scholar 

  9. de Kemp RA, Yoshinaga K, Beanlands RS. Will 3-dimensional PET-CT enable routine quantification of myocardial blood flow? J Nucl Cardiol 2007;14:380-97.

    Article  Google Scholar 

  10. Van Train KF, Maddahi J, Berman DS, Kiat H, Areeda J, Prigent F, et al. Quantitative analysis of tomographic stress thallium-201 myocardial scintigrams: A multicenter trial. J Nucl Med 1990;31:1168-79.

    PubMed  Google Scholar 

  11. Van Train KF, Areeda J, Garcia EV, Cooke DC, Maddahi J, Kiat H, et al. Quantitative same-day rest-stress technetium-99m-sestamibi SPECT: Definition and validation of stress normal limits and criteria for abnormality. J Nucl Med 1993;34:1494-502.

    PubMed  Google Scholar 

  12. Van Train KF, Garcia EV, Maddahi J, Areeda J, Cooke C, Kiat HS, et al. Multicenter trial validation for quantitative analysis of same-day rest-stress technetium-99m-sestamibi myocardial tomograms. J Nucl Med 1994;35:609-18.

    PubMed  Google Scholar 

  13. Parkash R, de Kemp RA, Ruddy TD, Kitsikis A, Hart R, Beauchesne L, et al. Potential utility of rubidium 82 PET quantification in patients with 3-vessel coronary artery disease. J Nucl Cardiol 2004;11:440-9.

    Article  PubMed  CAS  Google Scholar 

  14. Morise AP. Comparison of the Diamond-Forrester method and a new score to estimate the pretest probability of coronary disease before exercise testing. Am Heart J 1999;138:740-5.

    Article  PubMed  CAS  Google Scholar 

  15. Diamond GA, Forrester JS. Analysis of probability as an aid in the clinical diagnosis of coronary artery disease. N Engl J Med 1979;300:1350-8.

    Article  PubMed  CAS  Google Scholar 

  16. Ziadi MC, de Kemp RA, Williams KA, Guo A, Chow BJ, Renaud JM, et al. Impaired myocardial flow reserve on rubidium-82 positron emission tomography imaging predicts adverse outcomes in patients assessed for ischemia. J Am Coll Cardiol 2011;58:740-8.

    Article  PubMed  Google Scholar 

  17. Klein R, Adler A, Beanlands RS, de Kemp RA. Precision-controlled elution of a 82Sr/82Rb generator for cardiac perfusion imaging with positron emission tomography. Phys Med Biol 2007;52:659-73.

    Article  PubMed  CAS  Google Scholar 

  18. Klein R, Renaud JM, Ziadi MC, Thorn SL, Adler A, Beanlands RS, et al. Intra- and inter-operator repeatability of myocardial blood flow and myocardial flow reserve measurements using rubidium-82 PET and a highly automated analysis program. J Nucl Cardiol 2010;17:600-16.

    Article  PubMed  Google Scholar 

  19. Dilsizian V, Bacharach SL, Beanlands RS, Bergmann SR, Delbeke D, Gropler RJ. ASNC imaging guidelines for nuclear cardiology procedures: PET myocardial perfusion and metabolism clinical imaging. J Nucl Cardiol 2009;16:651-81.

    Article  Google Scholar 

  20. Ficaro EP, Lee BC, Kritzman JN, Corbett JR. Corridor4DM: The Michigan method for quantitative nuclear cardiology. J Nucl Cardiol 2007;14:455-65.

    Article  PubMed  Google Scholar 

  21. Mazzanti M, Germano G, Kiat H, Kavanagh PB, Alexanderson E, Friedman JD, et al. Identification of severe and extensive coronary artery disease by automatic measurement of transient ischemic dilation of the left ventricle in dual-isotope myocardial perfusion SPECT. J Am Coll Cardiol 1996;27:1612-20.

    Article  PubMed  CAS  Google Scholar 

  22. Hachamovitch R, Kang X, Amanullah AM, et al. Prognostic implications of myocardial perfusion single photon emission computed tomography in the elderly. Circulation 2009;120:2163-5.

    Article  Google Scholar 

  23. Herzog BA, Husmann L, Kaufmann PA, et al. Long-term prognostic value of 13N-ammonia myocardial perfusion PET: Added value of coronary flow reserve. J Am Coll Cardiol 2009;54:150-6.

    Article  PubMed  Google Scholar 

  24. Cerquiera MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 2002;105:539-42.

    Article  Google Scholar 

  25. Eng J. ROC analysis: Web-based calculator for ROC curves. Baltimore: Johns Hopkins University. Updated 2006 May 17; cited 17 Jan 2012. http://www.jrocfit.org.

  26. Klocke FJ, Baird MG, Lorell BH, Bateman TM, Messer JV, Berman DS, et al. ACC/AHA/ASNC Guidelines for the clinical use of cardiac radionuclide imaging—Executive summary. J Am Coll Cardiol 2003;42:1318-33.

    Article  PubMed  Google Scholar 

  27. Yoshinaga K, Katoh C, Manabe O, Klein R, Naya M, Sakakibara M, et al. Incremental diagnostic value of regional myocardial blood flow quantification over relative perfusion imaging with generator-produced rubidium-82 PET. Circ J 2011;75:2628-34.

    Article  PubMed  Google Scholar 

  28. Ziadi MC, deKemp RA, Williams K, Guo A, Renaud JM, Chow BJ, et al. Does quantification of myocardial flow reserve using Rubidium-82 positron emission tomography facilitate detection of multivessel coronary artery disease? J Nucl Cardiol 2012; doi:10.1007/s12350-011-9506-5.

  29. Lortie M, Beanlands RS, Yoshinaga K, Klein R, DaSilva JN, de Kemp RA. Quantification of myocardial blood flow with 82Rb dynamic PET imaging. Eur J Nucl Med Mol Imaging 2007;34:1765-74.

    Article  PubMed  Google Scholar 

  30. Dorbala S, Vanagala D, Sampson U, Limaye A, Kwong R, Di Carli MF. Value of vasodilator left ventricular ejection fraction reserve in evaluating the magnitude of myocardium at risk and the extent of angiographic coronary artery disease: A 82Rb PET/CT study. J Nucl Med 2007;48:349-58.

    PubMed  Google Scholar 

  31. Tang J, Rahmim A, Lautamaki R, Lodge MA, Bengel FM, Tsui BMW. Optimization of Rb-82 PET acquisition and reconstruction protocols for myocardial perfusion defect detection. Phys Med Biol 2009;54:3161-71.

    Article  PubMed  Google Scholar 

  32. Rozanski A, Diamond GA, Berman D, Forrester JS, Morris D, Swan HJ. The declining specificity of exercise radionuclide ventriculography. N Engl J Med 1983;309:518-22.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by an operating grant from the Canadian Institute of Health Research (CIHR) for the Rb-ARMI trial (Grant MIS-100935). The study was also supported in part by the Molecular Function and Imaging (MFI) Program Grant from the Heart and Stroke Foundation of Ontario (Grant #PRG6242). R.S.B. is a Career Investigator supported by the HSFO. T.K. was supported in part by the University of Ottawa Undergraduate Research Opportunities Program. The authors would like to thank May Aung and Kimberly Gardner for acquisition of the rubidium PET-CT scans; Judy Etele for patient enrolment and consent; and Ann Guo for assistance with the statistical assessments.

Disclosure

RSB and RdK are consultants with Jubilant DRAXimage and have received grant funding from a government/industry program (partners: GE Healthcare, Nordion, Lantheus Medical Imaging, DRAXimage). RdK receives revenues from rubidium generator technology licensed to Jubilant DRAXimage. RSB is a consultant for Lantheus Medical Imaging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert A. deKemp PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaster, T., Mylonas, I., Renaud, J.M. et al. Accuracy of low-dose rubidium-82 myocardial perfusion imaging for detection of coronary artery disease using 3D PET and normal database interpretation. J. Nucl. Cardiol. 19, 1135–1145 (2012). https://doi.org/10.1007/s12350-012-9621-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-012-9621-y

Keywords

Navigation