Advertisement

Specification and Thermodynamic Properties of Topological Time-Dependent Dynamical Systems

  • Javad Nazarian Sarkooh
  • F. H. GhaneEmail author
Article

Abstract

This paper discusses the thermodynamic properties for certain time-dependent dynamical systems. In particular, we are interested in time-dependent dynamical systems with the specification property. We show that each time-dependent dynamical system given by a sequence of surjective continuous self maps of a compact metric space with the specification property has positive topological entropy and all points are entropy point. In particular, it is proved that these systems are topologically chaotic. We will treat the dynamics of uniformly Ruelle-expanding time-dependent dynamical systems on compact metric spaces and provide some sufficient conditions that these systems have the specification property. Consequently, we conclude that these systems have positive topological entropy. This extends a result of Kawan (Nonlinearity 28:669–695, 2015), corresponding to the case when the expanding maps are smooth, to the more general case of expanding maps. Additionally, we study the topological pressure of time-dependent dynamical systems. We obtain conditions under which the topological entropy and topological pressure of any continuous potential can be computed as a limit at a definite size scale. Finally, we study the Lipschitz regularity of the topological pressure function for expansive and hence for uniformly Ruelle-expanding time-dependent dynamical systems on compact metric spaces.

Keywords

Non-autonomous dynamical system Topological entropy Specification property Entropy point Topological pressure Ruelle-expanding map 

Mathematics Subject Classification

37B55 37C60 37C40 37B40 37A25 

Notes

Acknowledgements

The authors would like to thank the respectful referee for his/her comments on the manuscript.

References

  1. 1.
    Adler, R., Konheim, A., McAndrew, M.: Toplogical entropy. Trans. Am. Math. Soc. 114, 309–319 (1965)CrossRefzbMATHGoogle Scholar
  2. 2.
    Barreira, L., Valls, C.: Stability of Nonautonomous Differential Equations. Lecture Notes in Mathematics, vol. 1926. Springer, Berlin (2008)CrossRefzbMATHGoogle Scholar
  3. 3.
    Bis, A.: An analogue of the variational principle for group and pseudogroup actions. Ann. Inst. Fourier (Grenoble) 63(3), 83–863 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Block, L.S., Coppel, W.A.: Dynamics in One Dimension. Lecture Notes in Mathematics, vol. 1513. Springer, Berlin (1992)CrossRefzbMATHGoogle Scholar
  5. 5.
    Block, L., Guckenheimer, J., Misuirewicz, M., Young, L.S.: Periodic Orbits and Topological Entropy of One-Dimensional Maps: Global Theory of Dynamical Systems. Lecture Notes in Mathematics, vol. 819. Springer, New York (1980)Google Scholar
  6. 6.
    Bowen, R.: Topological entropy and axiom A: global analysis. Proc. Symp. Pure Math. 14, 23–41 (1970)CrossRefGoogle Scholar
  7. 7.
    Bowen, R.: Entropy for group endomorphisms and homogenuous spaces. Trans. Am. Math. Soc. 153, 401–414 (1971)CrossRefzbMATHGoogle Scholar
  8. 8.
    Bowen, R.: Periodic points and measures for Axiom A diffeomorphisms. Trans. Am. Math. Soc. 154, 377–397 (1971)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Bowen, R.: Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms. Lecture Notes in Mathematics, vol. 470. Springer, Berlin (1975)CrossRefzbMATHGoogle Scholar
  10. 10.
    Carvalho, M., Rodrigues, F.B., Varandas, P.: Semigroup actions of expanding maps. J. Stat. Phys. 166, 114–136 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Castro, A., Rodrigues, F.B., Varandas, P.: Stability and limit theorems for sequences of uniformly hyperbolic dynamics (2017). arXiv:1709.01652
  12. 12.
    Castro, A., Rodrigues, F.B., Varandas, P.: Leafwise shadowing property for partiallly hyperbolic diffeomorphisms, Submitted (2017)Google Scholar
  13. 13.
    Cioletti, L., Lopes, A.O.: Ruelle operator for continuous potentials and DLR-Gibbs measures (2016). arXiv:1608.03881
  14. 14.
    Downarowciz, T.: Positive topological entropy implies chaos DC2. Proc. Am. Math. Soc. 142(1), 137–149 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Goodwyn, L.W.: Topological entropy bounds and measure-theoretic entropy. Proc. Am. Math. Soc. 23, 679–688 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Goodman, T.N.T.: Relating to entropy and measure entropy. Bull. Lond. Math. Soc. 3, 176–180 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Huang, X., Wen, X., Zeng, F.: Topological pressure of nonautonomous dynamical systems. Nonlinear Dyn. Syst. Theory. 8(1), 43–48 (2008)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Ito, S.: An estimate from above for the entropy and the topological entropy of a \(C^{1}\) diffeomorphism. Proc. Jpn. Acad. 46, 226–230 (1970)CrossRefzbMATHGoogle Scholar
  19. 19.
    Kawan, C.: Metric entropy of nonautonomous dynamical systems. Nonauton. Stoch. Dyn. Syst. 1, 26–52 (2013)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Kawan, C.: Expanding and expansive time-dependent dynamics. Nonlinearity. 28, 669–695 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Kawan, C., Latushkin, Y.: Some results on the entropy of non-autonomous dynamical systems. Dyn. Syst. 28, 1–29 (2015)zbMATHGoogle Scholar
  22. 22.
    Kloeden, P.E., Rasmussen, M.: Nonautonomous Dynamical Systems. Mathematical Surveys and Monographs, vol. 176. American Mathematical Society, Providence (2011)CrossRefGoogle Scholar
  23. 23.
    Kolyada, S., Snoha, L.: Topological entropy of nonautonomous dynamical systems. Random Comput. Dyn. 4, 205–233 (1996)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Manning, A.: Topological entropy and the first homology group. In: Dynamical Systems, Warwick, 1974, vol. 468 of lecture notes in mathematics, pp. 185–190, Springer, Berlin (1975)Google Scholar
  25. 25.
    Memarbashi, R., Rasuli, H.: Notes on the dynamics of nonautonomous discrete dynamical systems. J. Adv. Res. Dyn. Control Syst. 6(2), 8–17 (2014)MathSciNetGoogle Scholar
  26. 26.
    Misiurewicz, M., Przytycki, F.: Topological entropy and degree of smooth mappings. Bull. Acad. Pol. Sci. Math. Astron. Phys. 25, 573–574 (1977)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Ott, W., Stendlund, M., Young, L.S.: Memory loss for time-dependent dynamical systems. Math. Res. Lett. 16, 463–475 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Rodrigues, F.B., Varandas, P.: Specification and thermodynamical properties of semigroup actions. Math. Phys. 57, 052704 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Ruelle, D.: Statistical mechanics on a compact set with \({\mathbb{Z}}^{\nu }\) action satisfying expansiveness and specification. Trans. Am. Math. Soc. 185, 237–251 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Ruelle, D.: A measure associated with axiom A attractors. Am. J. Math. 98, 619–654 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Ruelle, D., Sinai, Y.G.: From dynamical systems to statistical mechanics and back. Phys. A: Stat. Mech. Appl. 140(1–2), 1–8 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Ruelle, D.: Thermodynamic formalism. Addison-Wesley, Reading (1978)Google Scholar
  33. 33.
    Sinai, Y.G.: Gibbs measures in ergodic theory. Rus. Math. Surv. 27, 21–69 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Thakkar, D., Das, R.: Topological stability of a sequence of maps on a compact metric space. Bull. Math. Sci. 4, 99–111 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Viana, M., Oliveira, K.: Foundations of Ergodic Theory. Cambridge University Press, Cambridge (2016)CrossRefzbMATHGoogle Scholar
  36. 36.
    Walters, P.: An Introduction to Ergodic Theory. Graduate Texts in Mathematics, vol. 79. Spinger, New York (1982)CrossRefGoogle Scholar
  37. 37.
    Walters, P.: A variational principle for the pressure of continuous transformations. Am. J. Math. 97, 937–971 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Walters, P.: Convergence of the Ruelle operator for a function satisfying Bowen’s condition. Trans. Am. Math. Soc. 353(1), 327–347 (2000)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of MathematicsFerdowsi University of MashhadMashhadIran

Personalised recommendations