Advertisement

Integrability and Linearizability Problems of Three Dimensional Lotka–Volterra Equations of Rank-2

  • Waleed AzizEmail author
Article
  • 2 Downloads

Abstract

This paper deals with both integrability and linearizability problems of three dimensional Lotka–Volterra systems at the origin with rank-2. We give necessary conditions of a system with quadratic nonlinearities with \((1:3:-\,1)\)-resonance. We proved the sufficiency of these conditions by showing the existence of two functionally independent first integrals via the Darboux method with inverse Jacobi multiplier together with some other techniques such as two equations define a linearizable node and the third equation is linearizable using the power series argument as well as the monodromy method.

Keywords

Three dimensional Lotka–Volterra system Darboux integrability Linearizability First integral Inverse Jacobi multiplier Monodromy 

Mathematics Subject Classification

Primary 37K10 Secondary 34A05 

Notes

Acknowledgements

We would like to thank the referees for their valuable comments, suggestions and efforts towards improving the original manuscript.

References

  1. 1.
    Aziz, W., Christopher, C.: Local integrability and linearizability of three-dimensional Lotka–Volterra systems. Appl. Math. Comput. 219, 4067–4081 (2012)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Aziz, W.: Analytic and algebraic aspects of integrability for first order partial differential equations. Ph.D. thesis, Plymouth University (2013)Google Scholar
  3. 3.
    Aziz, W.: Integrability and linearizability of three dimensional vector fields. Qual. Theory Dyn. Syst. 13, 197–213 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Basov, V.V., Romanovski, V.G.: First integrals of a three-dimensional system in the case of one zero eigenvalue. J. Phys. A Math. Theor. 43, 1–8 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Berrone, L.R., Giacomini, H.: Inverse Jacobi multiplier. Rend. Circ. Math. Palermo Ser. II 52, 77–103 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bobienski, M., Żoła̧dek, H.: The three-dimensional generalized Lotka–Volterra systems. Ergod. Theory Dyn. Syst. 25, 759–791 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Brenig, L.: Complete factorisation and analytic solutions of generalized Lotka–Volterra equations. Phys. Lett. 133, 378–382 (1988)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Brenig, L., Goriely, A.: Universal canonical forms for time-continuous dynamical systems. Phys. Rev. A 40, 4119–4122 (1989)CrossRefGoogle Scholar
  9. 9.
    Cairó, L.: Darboux first integral conditions and integrability of the 3D Lotka–Volterra system. J. Nonlinear Math. Phys. 7, 511–531 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Cairó, L., Llibre, J.: Darboux integrability for 3D Lotka–Volterra systems. J. Phys. A Math. Gen. 33, 2395–2406 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Christodoulides, Y.T., Damianou, P.A.: Darboux polynomials for Lotka–Volterra systems in three dimensions. J. Nonlinear Math. Phys. 16, 339–354 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Christopher, C., Rousseau, C.: Normalizable, integrable and linearizable saddle points in the Lotka–Volterra system. Qual. Theory Dyn. Syst. 5, 11–61 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Decker, W., Laplagne, S., Pfister, G., Schönemann, H.: primdec.lib, A singular 4-0-2 library for computing primary decomposition and radical of ideals (2015)Google Scholar
  14. 14.
    Decker, W., Pfister, G., Schönemann, H.: Singular 4-1-2: a computer algebra system for polynomial computations. http://www.singular.uni-kl.de (2019)
  15. 15.
    Dukarić, M., Oliveira, R., Romanovski, V.G.: Local integrability and linearizability of a \((1: -\,1: -\,1)\) resonant quadratic system. J. Dyn. Differ. Equ. 29, 597–613 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Dumortier, F., Llibre, J., Artés, J.C.: Qualitative Theory of Planar Differential Systems. Springer, Berlin (1977)zbMATHGoogle Scholar
  17. 17.
    Gao, P., Liu, Z.: An indirect method of finding integrals for three-dimensional quadratic homogeneous systems. Phys. Lett. A 244, 49–52 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Gonzalez-Gascon, F., Peralta Salas, D.: On first integrals of Lotka–Volterra systems. Phys. Lett. A 266, 336–340 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Goriely, A.: Integrability and Non-integrability of Dynamical Systems. Advanced series in Nonlinear Dynamics. World Scientific Publishing Co., Singapore (2001)zbMATHGoogle Scholar
  20. 20.
    Hu, Z., Aldazharova, M., Aldibekov, T.M., Romanovski, V.G.: Integrability of 3-dim polynomial systems with three invariant planes. Nonlinear Dyn. 74, 1077–1092 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Hu, Z., Han, M., Romanovski, V.G.: Local integrability of a family of three-dimensional quadratic systems. Physica D 265, 78–86 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Ilyashenko, Y., Yakovenko, S.: Lectures on Analytic Differential Equations. Graduate Studies in Mathematics, vol. 86. American Mathematical Society, Providence (2008)zbMATHGoogle Scholar
  23. 23.
    Jouanolou, J.P.: Equations de Pfaff Algébriques. Lectures Notes in Mathematics, vol. 708. Springer, Berlin (1979)CrossRefzbMATHGoogle Scholar
  24. 24.
    Labrunie, S.: On the polynomial first integrals of the \((a, b, c)\) Lotka–Volterra systems. J. Math. Phys. 37, 5539–5550 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Laval, G., Pellat, R.: Plasma physics. In: Proceedings of the Summer School of Theoretical Physics. Gordon and Breach, New York (1975)Google Scholar
  26. 26.
    Leach, P.G., Miritzis, J.: Analytic behaviour of competition among three species. J. Nonlinear Math. Phys. 13, 535–548 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Llibre, J., Valls, C.: On the polynomial integrability of the Hoyer systems. J. Math. Anal. Appl. 399, 411–417 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Llibre, J., Valls, C.: Polynomial, rational and analytic first integrals for a family of 3-dimensional Lotka–Volterra systems. Z. Angew. Math. Phys. 62, 761–777 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Llibre, J., Valls, C.: Polynomial first integrals of the Chen and Lu systems. Int. J. Bifuric. Chaos Appl. Sci. Eng. 22, 1250262 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Lamb, W.E.: Theory of an optical maser. Phys. Rev. A 134, 1429–1450 (1964)CrossRefGoogle Scholar
  31. 31.
    Llibre, J., Yu, J., Zhang, X.: On the integrability and polynomial integrability of the Euler equations. J. Geom. Phys. 96, 36–41 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Llibre, J., Zhang, X.: Rational first integrals in the darboux theory of integrability in \(\mathbb{C}^n\). Bull. Sci. Math. 134, 189–195 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Lotka, A.J.: Analytical note on certain rhythmic relations in organic systems. Proc. Natl. Acad. Sci. USA 6, 410–415 (1920)CrossRefGoogle Scholar
  34. 34.
    May, R.M.: Stability and Complexity in Model Ecosystems. Princeton University Press, Princeton (1974)Google Scholar
  35. 35.
    May, R.M., Leonard, W.J.: Nonlinear aspects of competition between three species. SIAM J. Appl. Math. 29, 243–256 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Moulin-Ollagnier, J.: Polynomial first integrals of the Lotka–Volterra systems. Bull. Sci. Math. 121, 463–476 (1997)MathSciNetzbMATHGoogle Scholar
  37. 37.
    Moulin-Ollagnier, J.: Liouvillian integration of the Lotka–Volterra systems. Qual. Theory Dyn. Syst. 2, 307–358 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Murza, A.C., Teruel, A.E.: Global dynamics of a family of 3D Lotka–Volterra systems. Dyn. Syst. Int. J. 25, 269–284 (2010)CrossRefzbMATHGoogle Scholar
  39. 39.
    Noonburg, V.W.: A neural network modeled by an adaptive Lotka–Volterra system. SIAM J. Appl. Math. 49, 1779–1792 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Romanovski, V.G., Shafer, D.S.: The Center and Cyclicity Problems: A Computational Algebra Approach. Birkhüser, Boston (2009)zbMATHGoogle Scholar
  41. 41.
    van den Driessche, P., Zeeman, M.L.: Three-dimensional competitive Lotka–Volterra systems with no periodic orbits. SIAM J. Appl. Math. 58, 227–234 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Volterra, V.: Leçons sur la Theéorie Mathématique de la Lutte pour la vie. Gauthier Villars, Paris (1931)zbMATHGoogle Scholar
  43. 43.
    Walcher, S.: Symmetries and convergence of normal form transformations. Monogr. Acad. Cienc. Zaragoza (Proceedings of the 6th Conference on Celestial Mechanics) 25, 251–268 (2004). (Spanish)MathSciNetGoogle Scholar
  44. 44.
    Zeeman, M.L.: Hopf bifurcations in competitive three dimensional Lotka–Volterra systems. Dyn. Stab. Syst. 8, 189–217 (1993)MathSciNetzbMATHGoogle Scholar
  45. 45.
    Zhang, X.: Analytic normalization of analytic integrable systems and the embedding flows. J. Differ. Equ. 244, 1080–1092 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Zhang, X.: Integrability of Dynamical Systems: Algebra and Analysis, vol. 47. Springer, Singapore (2017)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Mathematics Department, College of ScienceSalahaddin University-ErbilErbilIraq
  2. 2.Department of Computer Engineering, College of Engineering and Computer ScienceLebanese French UniversityErbilIraq

Personalised recommendations