Dynamical Classification of a Family of Birational Maps of \({\mathbb {C}}^2\) via Algebraic Entropy

  • Sundus ZafarEmail author
  • Anna Cima


This work dynamically classifies a 9-parametric family of birational maps \(f: {\mathbb {C}}^2 \rightarrow {\mathbb {C}}^2\). From the sequence of the degrees \(d_n\) of the iterates of f,  we find the dynamical degree \(\delta (f)\) of f. We identify when \(d_n\) grows periodically, linearly, quadratically or exponentially. The considered family includes the birational maps studied by Bedford and Kim (Mich Math J 54:647–670, 2006) as one of its subfamilies.


Birational maps Algebraic entropy First integrals Fibrations Blowing-up Integrability Periodicity Chaos 

Mathematics Subject Classification

14E05 26C15 34K19 28D20 37C15 39A23 39A45 



The first author is supported by Ministry of Economy, Industry and Competitiveness of the Spanish Government through Grants MINECO/FEDER MTM2016-77278 and also supported by the grant 2017-SGR-1617 from AGAUR, Generalitat de Catalunya.


  1. 1.
    Angles, J.C., Maillard, J.M., Viallet, C.: On the complexity of some birational transformations. J. Phys. A Math. Gen. 39, 36413654 (2006)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Barth, W., Hulek, K., Peters, C., Ven, A.: Compact Complex Surfaces, vol. 4. Springer, Berlin (2004)CrossRefGoogle Scholar
  3. 3.
    Bedford, E., Kim, K.: On the degree growth of birational mappings in higher dimension. J. Geom. Anal. 14, 567–596 (2004)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bedford, E., Kim, K.: Periodicities in linear fractional recurrences: degree growth of birational surface maps. Mich. Math. J. 54, 647–670 (2006)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bedford, E., Kim, K.: The dynamical degrees of a mapping. In: Proceedings of the Workshop Future Directions in Difference Equations, Colecc. Congr. vol. 69, pp. 3–13. University of Vigo (2011)Google Scholar
  6. 6.
    Bellon, M.P., Viallet, C.M.: Algebraic entropy. Comm. Math. Phys. 204(2), 425–437 (1999)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Blanc, J., Deserti, J.: Degree Growth of Birational Maps of the Plane arXiv:1109.6810 [math.AG] (2012)
  8. 8.
    Blanc, J., Cantat, S.: Dynamical Degree of Birational Transformations of Projective Surfaces arXiv:1307.0361 [math.AG] (2013)
  9. 9.
    Cima, A., Zafar, S.: Zero Entropy for Some Birational Maps of \({\mathbb{C}}^{2}\), arXiv:1704.07108
  10. 10.
    Cima, A., Zafar, S.: Invariant Fibrations for Some Birational Maps of \({\mathbb{C}}^{2}\), arXiv:1702.00959
  11. 11.
    Cima, A., Zafar, S.: Integrability and algebraic entropy of k-periodic non-autonomous Lyness recurrences. J. Math. Anal. Appl. 413, 20–34 (2014)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Cima, A., Gasull, A., Mañosa, V.: Dynamics of some rational discrete dynamical systems via invariants. J. Bifurc. Chaos 16(3), 631–645 (2006)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Cima, A., Gasull, A., Mañosa, V.: On 2- and 3-periodic Lyness difference equations. J. Differ. Equ. Appl. 18(5), 849–864 (2012)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Cima, A., Gasull, A., Mañosa, V.: Non-autonomous 2-periodic Gumovski–Mira difference equations. Int. J. Bifurc. Chaos Appl. Sci. Eng. 22((11)), 1250264 (2012). (14 pages)CrossRefGoogle Scholar
  15. 15.
    Devault, R., Schultz, S.W.: On the dynamics of \(x_{n+1}=\frac{\beta \, x_n +\gamma \, x_{n-1}}{B\, x_n +D\, x_{n-2}}\). Commun. Appl. Nonlinear Anal. 12, 3540 (2005)Google Scholar
  16. 16.
    Diller, J.: Dynamics of birational maps of \({P}{\mathbb{C}}^{2}\). Indiana Univ. Math. J. 45(3), 721–772 (1996)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Diller, J., Favre, C.: Dynamics of bimeromorphic maps of surfaces. Am. J. Math. 123, 1135–1169 (2001)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Fornaes, J.-E., Sibony, N.: Complex dynamics in higherdimension. In: II, Modern Methods in Complex Analysis (Princeton, NJ, 1992), 135182, Annals of Mathematics Studies, vol. 137. Princeton University Press, Princeton (1995)Google Scholar
  19. 19.
    Ladas, G.: On the rational recursive sequence \(x_{n+1}=\frac{a+\beta \, x_{n }+ x_{n-1}}{A+B\, x_n +C\, x_{n-1}}\). J. Differ. Equ. Appl. 1, 317321 (1995)Google Scholar
  20. 20.
    Ladas, G., Kulenovic, M., Prokup, N.: On the recursive sequence \(x_{n+1}=\frac{a\, x_n+b\, x_{n-1}}{A+x_n}\). J. Differ. Equ. Appl. 6, 563–576 (2000)CrossRefGoogle Scholar
  21. 21.
    Ladas, G., Gibbons, C.H., Kulenovic, M.R.S.: On the rational recursive sequence \(x_{n+1}=\frac{\alpha +\beta \, x_{n }+ \gamma \,x_{n-1}}{A+B\,x_n}\). In: Proceedings of the Fifth International Conference on Difference Equations and Applications, Temuco, Chile, 37 January 2000, pp. 141–158. Taylor and Francis, London (2002)Google Scholar
  22. 22.
    Ladas, G., Kulenovic, M.R.S., Martins, L.F., Rodrigues, I.W.: On the dynamics of \(x_{n+1}=\frac{a +b\, x_n}{A+B\, x_n+C\, x_{n-1}}\). Facts Conject. Comput. Math. Appl. 45, 1087–1099 (2003)CrossRefGoogle Scholar
  23. 23.
    Pettigrew, J., Roberts, J.A.G.: Characterizing singular curves in parametrized families of biquadratics. J. Phys. A 41((11)), 115203 (2008). 28 ppMathSciNetCrossRefGoogle Scholar
  24. 24.
    Roberts, J.A.G.: Order and symmetry in birational difference equations and their signatures over finite phase spaces. In: Proceedings of the Workshop Future Directions in Difference Equations, Colecc. Congr., vol. 69, pp. 213–221. University of Vigo (2011)Google Scholar
  25. 25.
    Yomdin, Y.: Volume growth and entropy. Isr. J. Math. 57, 285–300 (1987)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Zafar, S.: Dynamical Classification of Some Birational Maps of \({\mathbb{C}}^{2}\). Ph.D dissertation, Universitat Autónoma de Barcelona, Spain (2014)Google Scholar
  27. 27.
    Zayed, E.M.E., El-Moneam, M.A.: On the rational recursive sequence \(x_{n+1}=\frac{a\, x_n +b\, x_{n-k} }{cx n -d\, x_{n-k}}\). Commun. Appl. Nonlinear Anal. 15, 6776 (2008)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Universitat Autonoma de BarcelonaBarcelonaSpain

Personalised recommendations