Advertisement

On Dynamics of Triangular Maps of the Square with Zero Topological Entropy

  • Vojtěch Pravec
Article
  • 12 Downloads

Abstract

It is known that, for interval maps, zero topological entropy is equivalent with bounded topological sequence entropy as well as with the non-existence of Li–Yorke scrambled triples. In this paper we answer the question how the situation changes when triangular maps of the unit square are concerned instead of interval maps.

Keywords

Triangular maps Topological entropy Topological sequence entropy LY-scrambled triple 

AMS Subject Classification:

54H20 37B40 37O45 

Notes

Acknowledgements

The research was supported by Grant SGS/18/2016 from the Silesian University in Opava. Support of this institution is gratefully acknowledged. The author thanks his supervisor Professor Marta Štefánková for valuable suggestions and comments.

References

  1. 1.
    Block, L., Coppel, W.A.: Dynamics in One Dimension. Lecture Notes in Mathematics, vol. 1513. Springer, Berlin (1992)zbMATHGoogle Scholar
  2. 2.
    Bowen, R.: Entropy for group endomorphism and homogeneous spaces. Trans. Am. Math. Soc. 153, 401–414 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Cánovas, J.S.: Topological sequence entropy of interval maps. Nonlinearity 17, 49–56 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    de Melo, W., van Strien, S.: One-Dimensional Dynamics. Springer, Berlin (2012). ISBN 3642780431, 9783642780431zbMATHGoogle Scholar
  5. 5.
    Downarowicz, T.: Entropy in Dynamical System. Cambridge University Press, Cambridge (2011). ISBN 1139500872, 9781139500876CrossRefzbMATHGoogle Scholar
  6. 6.
    Downarowicz, T.: Minimal subsystems of triangular maps of type $2^\infty $. Conclusion of the Sharkovsky classification program. Chaos Solitons Fractals 49, 61–71 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Downarowicz, T., Štefánková, M.: Embedding Toeplitz systems in triangular maps: the last but one problem of the Sharkovsky classification program. Chaos Solitons Fractals 45, 1566–1572 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Goodman, T.N.T.: Topological sequence entropy. Proc. Lond. Math. Soc. 29, 331–350 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Huang, W., Li, J., Ye, X.: Stable sets and mean Li–Yorke chaos in positive entropy systems. J. Funct. Anal. 266, 3377–3394 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Kočan, Z.: The problem of classification of triangular maps with zero topological entropy. Ann. Math. Sil. 13, 181–192 (1999)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Kolyada, S., Snoha, L.: Topological entropy of nonautonomous dynamical systems. Random Comput. Dyn. 4(2–3), 205–233 (1996)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Li, J.: Chaos and entropy for interval maps. J. Dyn. Differ. Equ. 23, 333–352 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Štefánková, M.: The Sharkovsky program of classification of triangular maps—a survey. Topol. Proc. 48, 135–150 (2016)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Xiong, J.: Chaos in topological transitive systems. Sci. China A 48, 929–939 (2005)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Mathematical Institute in OpavaSilesian universityOpavaCzech Republic

Personalised recommendations