Qualitative Theory of Dynamical Systems

, Volume 12, Issue 2, pp 293–303 | Cite as

On Stacked Planar Central Configurations with Five Bodies when One Body is Removed

  • Antonio Carlos Fernandes
  • Luis Fernando MelloEmail author


In this paper we answer the following question posed by Hampton (Nonlinearity 18:2299–2304, 2005). In addition to symmetric collinear configurations and the square with a mass at its center are there any planar five-body central configurations with a subset forming a four-body central configuration? We prove that, for non-collinear configurations, the only possible strictly planar central configuration for the five-body problem for which it can be removed one body such that the remaining four bodies are already in a central configuration is obtained with four bodies of equal masses at the vertices of a square and the fifth body of arbitrary mass at the center of the square.


Planar central configuration Stacked central configuration Five-body problem Four-body problem 

Mathematics Subject Classification (2000)

Primary 70F10 70F15 Secondary 37N05 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Albouy A., Kaloshin V.: Finiteness of central configurations of five bodies in the plane. Ann. Math. 176, 535–588 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Arnold, V., Kozlov, V., Neishtadt, A.: Mathematical Aspects of Classical and Celestial Mechanics, 3rd edn. Springer, Berlin (2006)zbMATHGoogle Scholar
  3. 3.
    Bruns H.: Über des integrales der Vielkörper problem. Acta Mathematica 11, 25–96 (1887)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Euler L.: De moto rectilineo trium corporum se mutuo attahentium. Novi Comm. Acad. Sci. Imp. Petrop. 11, 144–151 (1767)Google Scholar
  5. 5.
    Hagihara, Y.: Celestial Mechanics, vol. 1. MIT Press, Massachusetts (1970)Google Scholar
  6. 6.
    Hampton M.: Stacked central configurations: new examples in the planar five-body problem. Nonlinearity 18, 2299–2304 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Hampton, M. (2005) Co-circular central configurations in the four-body problem. In: Dumortier, F., Henk, B., et al. (eds.) Equadiff 2003, Proceedings of the International Conference on Differential Equations, pp. 993–998. World Scientific Publishing Co., SingaporeGoogle Scholar
  8. 8.
    Hampton M., Moeckel R.: Finiteness of relative equilibria of the four-body problem. Invent. Math. 163, 289–312 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Lagrange, J.L.: Essai sur le problème de trois corps. Ouvres, vol. 6. Gauthier–Villars, Paris (1873)Google Scholar
  10. 10.
    Llibre J., Mello L.F.: New central configurations for the planar 5-body problem. Celestial Mech. Dynam. Astron. 100, 141–149 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Mello, L.F., Chaves, F.E., Fernandes, A.C.: Configurações centrais do tipo pipa. Rev. Bras. Ensino Fis. 31, 13021–13027 (2009, In Portuguese)Google Scholar
  12. 12.
    Moeckel R.: On central configurations. Math. Z. 205, 499–517 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Newton I.: Philosophi Naturalis Principia Mathematica. Royal Society, London (1687)Google Scholar
  14. 14.
    Saari D.: On the role and properties of central configurations. Celestial Mech. 21, 9–20 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Saari D.: Collisions, rings, and other Newtonian N-body problems. American Mathematical Society, Providence (2005)Google Scholar
  16. 16.
    Smale S.: Topology and mechanics II: the planar n-body problem. Invent. Math. 11, 45–64 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Smale S.: Mathematical problems for the next century. Math. Intell. 20, 7–15 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Wintner A.: The Analytical Foundations of Celestial Mechanics. Princeton University Press, Princeton (1941)Google Scholar

Copyright information

© Springer Basel AG 2012

Authors and Affiliations

  • Antonio Carlos Fernandes
    • 1
  • Luis Fernando Mello
    • 1
    Email author
  1. 1.Instituto de Ciências ExatasUniversidade Federal de ItajubáItajubáBrazil

Personalised recommendations