pp 1–9 | Cite as


Innovative Konzepte für die Entwicklung von Anti-Aging-Dermokosmetika
Ästhetische Dermatologie


Effektive Anti-Aging-Wirkstoffe können nur dann entwickeltwerden, wenn der Alterungsprozess vollständig verstanden ist. Da dies bis heute noch nicht vollständig der Fall ist, sind derzeit nur solche Wirkstoffe verfügbar, die in bereits verstandene Teilbereiche des Alterungsprozesses eingreifen können. Der Beitrag umreißt die wesentlichen heute bekannten Anti-Aging-Strategien und erläutert, basierend darauf, neue und innovative Konzepte für die Entwicklung von Anti-Aging-Dermokosmetika.


Altern Alterungsprozess Wirkstoffe Dermokosmetika Mikrobiom 


Innovative Concepts for Developing Anti-Aging Dermo-Cosmetics


Effective anti-aging agents can only be developed when the aging process is completelyunderstood. As this is not yet completely the case, only such agents are currently available, which can intervene in already understood partial areas of the aging process. This article outlines the essential anti-aging strategies known today and based on this describes new and innovative concepts for the development of anti-aging dermo-cosmetics.


Aging Aging process Agents Dermal cosmetics Microbiome 


  1. 1.
    Köckritz A (2001) Flüsse aus Quecksilber. Zeit 11(26):3Google Scholar
  2. 2.
    da Costa JP et al (2016) A synopsis on agingtheories, mechanisms and future prospects. Ageing Res Rev 29:90–112PubMedGoogle Scholar
  3. 3.
    Hasworth SB, Cannon ML (2015) Social theories of aging: a review. Dis Mon 61(11):475–479PubMedGoogle Scholar
  4. 4.
    Avantaggiato A et al (2015) The theories of aging: reactive oxygen species and what else? J Biol Regul Homeost Agents 29(3Suppl 1):156–163PubMedGoogle Scholar
  5. 5.
    Lipsky MS, King M (2015) Biological theories of aging. Dis Mon 61(11):460–466PubMedGoogle Scholar
  6. 6.
    Libertini G (2015) Non-programmed versus programmed aging paradigm. Curr Aging Sci 8(1):56–68PubMedGoogle Scholar
  7. 7.
    Goldsmith TC (2015) Is the evolutionary programmed/non-programmed aging argument moot? Curr Aging Sci 8(1):41–45PubMedGoogle Scholar
  8. 8.
    Aledo JC, Blanco JM (2015) Agingisneitherafailure nor an achievement of natural selection. Curr Aging Sci 8(1):4–10PubMedGoogle Scholar
  9. 9.
    Cohen AA (2016) Complex systems dynamics in aging: new evidence, continuing questions. Biogerontology 17(1):205–220PubMedGoogle Scholar
  10. 10.
    Sergiev PV, Dontsova OA, Berezkin GV (2015) Theories of aging: an ever-evolving field. Acta Naturae 7(1):9–18PubMedPubMedCentralGoogle Scholar
  11. 11.
    Piotrowska A, Bartnik E (2014) The role of reactive oxygen species and mitochondria in aging. Postepy Biochem 60(2):240–247PubMedGoogle Scholar
  12. 12.
    Sikora E (2014) Aging and longevity. Postepy Biochem 60(2):125–137PubMedGoogle Scholar
  13. 13.
    Liochev SI (2015) Reflections on the theories of aging, of oxidative stress, and of science in general. Is it time to abandon the free radical (oxidative stress) theory of aging? Antioxid Redox Signal 23(3):187–207PubMedGoogle Scholar
  14. 14.
    Fulop T et al (2014) On the immunological theory of aging. Interdiscip Top Gerontol 39:163–176PubMedGoogle Scholar
  15. 15.
    Zs-Nagy I (2014) Aging of cell membranes: facts and theories. Interdiscip Top Gerontol 39:62–85PubMedGoogle Scholar
  16. 16.
    Le Bourg E (2014) Evolutionary theories of aging can explain why we age. Interdiscip Top Gerontol 39:8–23PubMedGoogle Scholar
  17. 17.
    Park DC, Yeo SG (2013) Aging. Korean J Audiol 17(2):39–44PubMedPubMedCentralGoogle Scholar
  18. 18.
    Moskalev AA et al (2014) Genetics and epigenetics ofagingandlongevity. Cell Cycle 13(7):1063–1077PubMedPubMedCentralGoogle Scholar
  19. 19.
    Hardeland R (2013) Melatonin and the theories of aging: a critical appraisal of melatonin’s role in antiaging mechanisms. J Pineal Res 55(4):325–356PubMedGoogle Scholar
  20. 20.
    Mao L, Franke J (2013) Hormesis in aging and neurodegeneration – a prodigy awaiting dissection. Int J Mol Sci 14(7):13109–13128PubMedPubMedCentralGoogle Scholar
  21. 21.
    Xi H et al (2013) Telomere, aging and age-related diseases. Aging Clin Exp Res 25(2):139–146PubMedGoogle Scholar
  22. 22.
    Gkogkolou P, Bohm M (2012) Advanced glycation end products: key players in skin aging? Dermatoendocrinol 4(3):259–270PubMedPubMedCentralGoogle Scholar
  23. 23.
    Naito AT, Komuro I (2013) Chronic inflammation andorganismal aging. Clin Calcium 23(1):51–58PubMedGoogle Scholar
  24. 24.
    Madden CL, Cloyes KG (2012) The discourse of aging. ANS Adv Nurs Sci 35(3):264–272PubMedGoogle Scholar
  25. 25.
    Jenny NS (2012) Inflammation in aging: cause, effect, or both? Discov Med 13(73):451–460PubMedGoogle Scholar
  26. 26.
    Cefalu CA (2011) Theories and mechanisms of aging. Clin Geriatr Med 27(4):491–506PubMedGoogle Scholar
  27. 27.
    Weinert BT, Timiras PS (1985) Invited review: theories of aging. J Appl Physiol 95(4):1706–1716Google Scholar
  28. 28.
    Medvedev ZA (1990) An attempt at a rational classification of theories of ageing. Biol Rev Camb Philos Soc 65(3):375–398PubMedGoogle Scholar
  29. 29.
    Huber J, Buchacher R (2007) Das Ende des Alterns: Bahnbrechende medizinische Möglichkeiten der Verjüngung. Ullstein, BerlinGoogle Scholar
  30. 30.
    Stipp D (2010) The youth pill: scientists at the brink of an anti-aging revolution. Penguin Group, CurrentGoogle Scholar
  31. 31.
    Flatt T (2012) A new definition of aging? Front Genet 3:148PubMedPubMedCentralGoogle Scholar
  32. 32.
    Busse EW (1969) Onemedical school’s approach to teaching problems of the aging. J Am Geriatr Soc 17(3):299–314PubMedGoogle Scholar
  33. 33.
    Anstey K, Stankov L, Lord S (1993) Primary aging, secondary aging, and intelligence. Psychol Aging 8(4):562–570PubMedGoogle Scholar
  34. 34.
    Robinson LJ et al (2003) Proteomic analysis of the genetic premature aging disease Hutchinson Gilford progeria syndrome reveals differential protein expression and glycosylation. J Proteome Res 2(5):556–557PubMedGoogle Scholar
  35. 35.
    Brown WT (1992) Progeria: a human-disease model of accelerated aging. Am J Clin Nutr 55(6 Suppl):S1222–S1224Google Scholar
  36. 36.
    Brown WT, Zebrower M, Kieras FJ (1985) Progeria, a model disease for the study of accelerate daging. Basic Life Sci 35:375–396PubMedGoogle Scholar
  37. 37.
    Blancquaert A (1959) Progeria & progeria-like disease. Maandschr Kindergeneeskd 27(5):157–171PubMedGoogle Scholar
  38. 38.
    Paglia DE, Walford RL (2005) Atypical hematological response to combined calorie restriction and chronic hypoxia in biosphere 2 crew: a possible link to latent features of hibernation capacity. Habitation (Elmsford) 10(2):79–85Google Scholar
  39. 39.
    Walford RL et al (2002) Calorie restriction in biosphere 2: alterations in physiologic, hematologic, hormonal, andbiochemicalparameters inhumans restricted for a 2-year period. J Gerontol A Biol Sci Med Sci 57(6):B211–B224PubMedGoogle Scholar
  40. 40.
    Walford RL et al (1999) Physiologic changes in humans subjected to severe, selective calorie restriction for two years in biosphere 2: health, aging, and toxicological perspectives. Toxicol Sci 52(2Suppl):61–65PubMedGoogle Scholar
  41. 41.
    Al-Regaiey KA (2016) The effects of calorie restriction on aging: a brief review. Eur Rev Med Pharmacol Sci 20(11):2468–2473PubMedGoogle Scholar
  42. 42.
    Zhang N et al (2016) Calorie restriction-induced SIRT6 activation delays aging by suppressing NFkappaB signaling. Cell Cycle 15(7):1009–1018PubMedPubMedCentralGoogle Scholar
  43. 43.
    Salvatore MF et al (2016) Initiation of calorie restriction in middle-aged male rats attenuates aging-related motoric decline and bradykinesia without increased striatal dopamine. Neurobiol Aging 37:192–207PubMedGoogle Scholar
  44. 44.
    Trubitsyn AG (2015) The lag of the proliferative aging clock underlies thelifespan-extending effect of calorie restriction. Curr Aging Sci 8(3):220–226PubMedGoogle Scholar
  45. 45.
    Karunadharma PP et al (2015) Subacute calorie restriction and rapamycin discordantly alter mouse liver proteome homeostasis and reverse aging effects. Aging Cell 14(4):547–557PubMedPubMedCentralGoogle Scholar
  46. 46.
    Xu C et al (2015) Calorie restriction prevents metabolic aging caused by abnormal SIRT1 function in adipose tissues. Diabetes 64(5):1576–1590PubMedGoogle Scholar
  47. 47.
    Kim DH et al (2015) The roles of FoxOs in modulation of aging by calorie restriction. Biogerontology 16(1):1–14PubMedGoogle Scholar
  48. 48.
    Kim DH et al (2014) The essential role of FoxO6 phosphorylation in aging and calorie restriction. Age (Dordr) 36(4):9679Google Scholar
  49. 49.
    Michan S (2014) Calorie restriction and NAD(+)/sirtuin counteract the hallmarks of aging. Front Biosci 19:1300–1319Google Scholar
  50. 50.
    Testa G et al (2014) Calorie restriction and dietary restriction mimetics: a strategy for improving healthy aging and longevity. Curr Pharm Des 20(18):2950–2977PubMedGoogle Scholar
  51. 51.
    Yamada Y et al (2013) Long-term calorie restriction decreases metabolic cost of movement and prevents decrease of physical activity during aging in rhesus monkeys. Exp Gerontol 48(11):1226–1235PubMedGoogle Scholar
  52. 52.
    Yan L et al (2013) Calorie restriction can reverse, as well as prevent, aging cardiomyopathy. Age 35(6):2177–2182PubMedPubMedCentralGoogle Scholar
  53. 53.
    Chung KW et al (2013) Recent advances in calorie restriction research on aging. Exp Gerontol 48(10):1049–1053PubMedGoogle Scholar
  54. 54.
    Drewnowski A et al (1996) Diet quality and dietary diversity in France: implications for the French paradox. J Am Diet Assoc 96(7):663–669PubMedGoogle Scholar
  55. 55.
    Burr ML (1995) Explaining the French paradox. J R Soc Health 115(4):217–219PubMedGoogle Scholar
  56. 56.
    Renaud S, de Lorgeril M (1993) The French paradox: dietary factors and cigarette smoking-related health risks. Ann N Y Acad Sci 686:299–309PubMedGoogle Scholar
  57. 57.
    Renaud S, de Lorgeril M (1992) Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet 339(8808):1523–1526PubMedGoogle Scholar
  58. 58.
    Richard JL (1987) Coronary risk factors. The French paradox. Arch Mal Coeur Vaiss 80(SpecNo):17–21PubMedGoogle Scholar
  59. 59.
    Yang X, Li X, Ren J (2014) From French paradox to cancer treatment: anti-cancer activities and mechanisms of resveratrol. Anticancer Agents Med Chem 14(6):806–825PubMedGoogle Scholar
  60. 60.
    Goldfinger TM (2003) Beyond the French paradox: the impact of moderate beverage alcohol and wine consumption in the prevention of cardiovascular disease. Cardiol Clin 21(3):449–457PubMedGoogle Scholar
  61. 61.
    Yarnell JW, Evans AE (2000) The Mediterranean diet revisited – towards resolving the (French) paradox. QJM 93(12):783–785PubMedGoogle Scholar
  62. 62.
    Renaud S, Gueguen R (1998) The French paradox and wine drinking. Novartis Found Symp 216:208–217 (discussion217–22,152–8)PubMedGoogle Scholar
  63. 63.
    Kapoor VK, Dureja J, Chadha R (2009) Synthetic drugs with anti-ageing effects. Drug Discov Today 14(17–18):899–904PubMedGoogle Scholar
  64. 64.
    Harman D (1982) Nutritional implications of the free-radical theory of aging. J Am Coll Nutr 1(1):27–34PubMedGoogle Scholar
  65. 65.
    Harman D (1988) Free radicals in aging. Mol Cell Biochem 84(2):155–161PubMedGoogle Scholar
  66. 66.
    Harman D (1991) The aging process: major risk factor for disease and death. Proc Natl Acad Sci USA 88(12):5360–5363PubMedPubMedCentralGoogle Scholar
  67. 67.
    Harman D (1992) Free radical theory of aging. Mutat Res 275(3–6):257–266PubMedGoogle Scholar
  68. 68.
    Harman D (1992) Free radical theory of aging: history. EXS 62:1–10PubMedGoogle Scholar
  69. 69.
    Harman D (1993) Freeradical involvementinaging. Pathophysiology and therapeutic implications. Drugs Aging 3(1):60–80PubMedGoogle Scholar
  70. 70.
    Harman D (1994) Free-radical theory of aging. Increasing the functional life span. Ann N Y Acad Sci 717:1–15PubMedGoogle Scholar
  71. 71.
    Harman D (1998) Extending functional life span. Exp Gerontol 33(1–2):95–112PubMedGoogle Scholar
  72. 72.
    Harman D (1998) Aging and oxidative stress. J Int Fed Clin Chem 10(1):24–27PubMedGoogle Scholar
  73. 73.
    Harman D (2000) Alzheimer’s disease: a hypothesis on pathogenesis. J Am Aging Assoc 23(3):147–161PubMedPubMedCentralGoogle Scholar
  74. 74.
    Harman D (2000) Antioxidant supplements: effects on disease and aging in the United States population. J Am Aging Assoc 23(1):25–31PubMedPubMedCentralGoogle Scholar
  75. 75.
    Harman D (2001) Aging: overview. Ann N Y Acad Sci 928:1–21PubMedGoogle Scholar
  76. 76.
    Harman D (2003) The free radical theory of aging. Antioxid Redox Signal 5(5):557–561PubMedGoogle Scholar
  77. 77.
    Harman D (2006) Free radical theory of aging: an update: increasing the functional lifespan. Ann N Y Acad Sci 1067:10–21PubMedGoogle Scholar
  78. 78.
    Harman D (2009) About „Origin and evolution of the free radical theory of aging: a brief personal history, 1954–2009“. Biogerontology 10(6):783PubMedGoogle Scholar
  79. 79.
    Lichtenstein AH, Russell RM (2005) Essential nutrients: food or supplements? Where should the emphasis be? JAMA 294(3):351–358PubMedGoogle Scholar
  80. 80.
    Murphy SP et al (2007) Multivitamin-multimineral supplements’ effect on total nutrient intake. Am J Clin Nutr 85(1):280–284Google Scholar
  81. 81.
    Penniston KL, Tanumihardjo SA (2003) Vitamin A in dietary supplements and fortified foods: too much of a good thing? J Am Diet Assoc 103(9):1185–1187PubMedGoogle Scholar
  82. 82.
    Tomada I, Andrade JP (2015) Science based antiageing nutritional recommendations (Chapter 11). In: Neves D (Hrsg) Anti-ageing nutrients: evidence based prevention of age-associated diseases. Wiley, Hoboken, S 365–390Google Scholar
  83. 83.
    Diamanti-Kandarakis E et al (2017) Mechanisms in endocrinology: aging and anti-aging: a combo-endocrinology overview. Eur J Endocrinol 176(6):R283–R308PubMedGoogle Scholar
  84. 84.
    Morley JE (2013) Scientific overview of hormone treatment used for rejuvenation. Fertil Steril 99(7):1807–1813PubMedGoogle Scholar
  85. 85.
    Zdanys KF, Steffens DC (2015) Sleep disturbances in the elderly. Psychiatr Clin North Am 38(4):723–741PubMedGoogle Scholar
  86. 86.
    Duffy JF, Zitting KM, Chinoy ED (2015) Aging and circadian rhythms. Sleep Med Clin 10(4):423–434PubMedPubMedCentralGoogle Scholar
  87. 87.
    Manchester LC et al (2015) Melatonin: an ancient molecule that makes oxygen metabolically tolerable. J Pineal Res 59(4):403–419PubMedGoogle Scholar
  88. 88.
    Ramis MR et al (2015) Protective effects of melatonin and mitochondria-targeted antioxidants against oxidative stress: a review. Curr Med Chem 22(22):2690–2711PubMedGoogle Scholar
  89. 89.
    Ramis MR et al (2015) Caloric restriction, resveratrol and melatonin: role of SIRT1 and implications for aging and related-diseases. Mech Ageing Dev 146–148:28–41PubMedGoogle Scholar
  90. 90.
    Karaaslan C, Suzen S (2015) Antioxidant properties of melatonin and its potential action in diseases. Curr Top Med Chem 15(9):894–903PubMedGoogle Scholar
  91. 91.
    Jenwitheesuk A et al (2014) Melatonin regulates aging and neurodegeneration through energy metabolism, epigenetics, autophagy and circadian rhythm pathways. Int J Mol Sci 15(9):16848–16884PubMedPubMedCentralGoogle Scholar
  92. 92.
    Sadowska-Bartosz I, Bartosz G (2014) Effect of antioxidants supplementation on aging and longevity. Biomed Res Int.  https://doi.org/10.1155/2014/404680 PubMedPubMedCentralGoogle Scholar
  93. 93.
    Mayo JC et al (2017) Melatonin and sirtuins: a „notso unexpected“ relationship. J Pineal Res.  https://doi.org/10.1111/jpi.12391 Google Scholar
  94. 94.
    Reiter RJ et al (2002) Melatonin, longevity and health in the aged: an assessment. Free Radic Res 36(12):1323–1329PubMedGoogle Scholar
  95. 95.
    Tanaka Y et al (1999) Effect of metformin on advanced glycation endproduct formation and peripheral nerve function in streptozotocin-induced diabetic rats. Eur J Pharmacol 376(1–2):17–22PubMedGoogle Scholar
  96. 96.
    Ouslimani N et al (2007) Metformin reduces endothelial cell expression ofboth the receptor for advanced glycation end products and lectin-like oxidizedreceptor 1. Metabolism 56(3):308–313PubMedGoogle Scholar
  97. 97.
    Beisswenger P, Ruggiero-Lopez D (2003) Metformin inhibition of glycation processes. Diabetes Metab 29(4Pt2):6S95–6103PubMedGoogle Scholar
  98. 98.
    Ishibashi Y et al (2013) Metformin inhibits advanced glycation end products (AGEs)-induced growth and VEGF expression in MCF-7 breast cancer cells by suppressing AGEs receptor expression via AMP-activated protein kinase. Horm Metab Res 45(5):387–390PubMedGoogle Scholar
  99. 99.
    Carmona JJ, Michan S (2016) Biology of healthy aging and longevity. Rev Invest Clin 68(1):7–16PubMedGoogle Scholar
  100. 100.
    Lopez-Lluch G, Navas P (2016) Calorie restriction as an intervention in ageing. J Physiol 594(8):2043–2060PubMedPubMedCentralGoogle Scholar
  101. 101.
    Santos J et al (2016) Dietary restriction and nutrient balance in aging. Oxid Med Cell Longev.  https://doi.org/10.1155/2016/4010357 Google Scholar
  102. 102.
    Pavicic T et al. Dermokosmetika gegen Hautalterung – Leitlinie der GD Gesellschaft für Dermopharmazie e. V. http://www.gd-online.de. Zugegriffen: 12. Juni 2017
  103. 103.
    Ramos-e-Silva M et al (2013) Anti-aging cosmetics: facts and controversies. Clin Dermatol 31(6):750–758PubMedGoogle Scholar
  104. 104.
    Trommer H, Böttcher R, Neubert RHH (2002) Ascorbinsäure – Ein Vitamin wie Dr. Jekyll und Mr. Hyde. PZ-Pharmazeutische Zeitung – online, 2002. 48. http://www.pharmazeutische-zeitung. de/index.php?id=24758. Zugegriffen: 25. Juli 2017Google Scholar
  105. 105.
    SteilingH RM (2009) Castiel I. Bioavaialability and skin bio afficacy of Vitamin C and E. In: Tabor A, Blair RM (Hrsg) Nutritional cosmetics: beauty from within. Elsevier ,William Andrew, Amsterdam, S 113–138Google Scholar
  106. 106.
    Leveque N et al (2002) Decrease in skin ascorbic acid concentration with age. Eur J Dermatol 12(4):XXI–XXIIPubMedGoogle Scholar
  107. 107.
    Passi S et al (2002) Lipophilic antioxidants in human sebum and aging. Free Radic Res 36(4):471–477PubMedGoogle Scholar
  108. 108.
    Vidlarova L et al (2016) Nanocrystals for dermal penetration enhancement –effect of concentration and underlying mechanisms using curcumin as model. Eur J Pharm Biopharm 104:216–225PubMedGoogle Scholar
  109. 109.
    Romero GB et al (2015) Industrial concentrates of dermal hesperidin smartCrystals®-production, characterization & long-term stability. Int J Pharm 482(1–2):54–60PubMedGoogle Scholar
  110. 110.
    Al Shaal L, Müller RH, Shegokar R (2010) smartCrystal combination technology – scale up from lab to pilot scale and long term stability. Pharmazie 65(12):877–884PubMedGoogle Scholar
  111. 111.
    Keck CM, Müller RH (2008) Nanodiamanten – Erhöhte Bioaktivität. Labor More 1:64–65Google Scholar
  112. 112.
    Keck CM, Chen R, Müller RH (2013) SmartCrystals for consumer care & cosmetics: enhanced dermal delivery of poorly soluble plant actives. Househ Pers Care Today 8(5):18–24Google Scholar
  113. 113.
    Ganceviciene R et al (2012) Skin anti-aging strategies. Dermatoendocrinol 4(3):308–319PubMedPubMedCentralGoogle Scholar
  114. 114.
    Sparavigna A, Tenconi B, De Ponti I (2015) Antiaging, photoprotective, and brightening activity in biorevitalization: a new solution for aging skin. Clin Cosmet Investig Dermatol 8:57–65PubMedPubMedCentralGoogle Scholar
  115. 115.
    Zastrow L, Lademann J (2016) Light – instead of UV protection: new requirements for skin cancer prevention. Anticancer Res 36(3):1389–1393PubMedGoogle Scholar
  116. 116.
    Darvin ME et al (2010) Radical production by infrared A irradiation in human tissue. Skin Pharmacol Physiol 23(1):40–46PubMedGoogle Scholar
  117. 117.
    Darvin ME et al (2010) Formation of free radicals in human skin during irradiation with infrared light. J Invest Dermatol 130(2):629–631PubMedGoogle Scholar
  118. 118.
    Zastrow L et al (2009) UV, visible and infrared light. Which wavelengths produce oxidative stress in human skin? Hautarzt 60(4):310–317PubMedGoogle Scholar
  119. 119.
    Zastrow L et al (2009) The missing link – light induced (280–1,600 nm) free radical formation in human skin. Skin Pharmacol Physiol 22(1):31–44PubMedGoogle Scholar
  120. 120.
    Puri P et al (2017) Effects of air pollution on the skin: a review. Indian J Dermatol Venereol Leprol 83(4):415–423PubMedGoogle Scholar
  121. 121.
    Krutmann J et al (2017) The skin aging exposome. J Dermatol Sci 85(3):152–161PubMedGoogle Scholar
  122. 122.
    Kim KE, Cho D, Park HJ (2016) Air pollution and skin diseases: adverse effects of airborne particulate matter on various skin diseases. Life Sci 152:126–134PubMedGoogle Scholar
  123. 123.
    Krutmann J et al (2016) Environmentally induced (extrinsic) skinaging. Hautarzt 67(2):99–102PubMedGoogle Scholar
  124. 124.
    Li M et al (2015) Epidemiological evidence that indoor air pollution from cooking with solid fuels accelerates skin aging in Chinese women. J Dermatol Sci 79(2):148–154PubMedGoogle Scholar
  125. 125.
    Pan TL et al (2015) The impact of urban particulate pollution on skin barrier function and the subsequent drug absorption. J Dermatol Sci 78(1):51–60PubMedGoogle Scholar
  126. 126.
    Hsu S (2015) Compounds derived from Epigallocatechin-3-Gallate (EGCG) as a novel approach to the prevention of viral infections. Inflamm Allergy Drug Targets 14(1):13–18PubMedGoogle Scholar
  127. 127.
    Kong HH, Segre JA (2017) The molecular revolution in cutaneous biology: investigating the skin microbiome. J Invest Dermatol 137(5):e119–e122PubMedGoogle Scholar
  128. 128.
    Kirker KR, James GA (2017) In vitro studies evaluating the effects of biofilms on woundhealing cells: a review. APMIS 125(4):344–352PubMedGoogle Scholar
  129. 129.
    Igawa S, Di Nardo A (2017) Skin microbiome and mast cells. Trans L Res 184:68–76Google Scholar
  130. 130.
    Dreno B et al (2016) Microbiome in healthy skin, update for dermatologists. J Eur Acad Dermatol Venereol 30(12):2038–2047PubMedGoogle Scholar
  131. 131.
    Holmes AD, Steinhoff M (2016) Integrative concepts of rosacea pathophysiology, clinical presentation and new therapeutics. Exp Dermatol.  https://doi.org/10.1111/exd.13143 PubMedGoogle Scholar
  132. 132.
    Cundell AM (2016) Microbial ecology of the human skin. Microb Ecol.  https://doi.org/10.1007/s00248-016-0789-6 PubMedGoogle Scholar
  133. 133.
    Egert M, Simmering R (2016) The microbiota of the human skin. Adv Exp Med Biol 902:61–81PubMedGoogle Scholar
  134. 134.
    Fyhrquist N et al (2016) Skin biomes. Curr Allergy Asthma Rep 16(5):40PubMedGoogle Scholar
  135. 135.
    Zealley B, de Grey AD (2013) Strategies for engineered negligible senescence. Gerontology 59(2):183–189PubMedGoogle Scholar
  136. 136.
    Kaushik G, Leijten J, Khademhosseini A (2017) Concise review: organ engineering: design, technology, and integration. Stem Cells 35(1):51–60PubMedGoogle Scholar
  137. 137.
    Husain SR, Ohya Y, Puri RK (2017) Current status and challenges of three-dimensional modeling and printing of tissues and organs. Tissue Eng Part A 23(11–12):471–473PubMedGoogle Scholar
  138. 138.
    Jakus AE, Rutz AL, Shah RN (2016) Advancing the field of 3D biomaterial printing. Biomed Mater 11(1):14102PubMedGoogle Scholar
  139. 139.
    Yu B et al (2016) An elastic second skin. Nat Mater 15(8):911–918PubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Institut für Pharmazeutische Technologie und BiopharmaziePhilipps-Universität MarburgMarburgDeutschland

Personalised recommendations