Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Social Cognition in Chiari Malformation Type I: a Preliminary Characterization

Abstract

Chiari malformation type I (CM-I) is a neurological disorder in which cerebellar tonsils are herniated through the foramen magnum into the spinal canal. A wide spectrum of cognitive deficits underlying this pathology has been reported, but the literature about social cognition is insufficient. Clinical research has pointed out the cerebellar role in Theory of Mind (ToM), indicating that there are several disorders with cerebellar pathology that reveal a poorer performance in social cognition tasks. The main purpose of this study is to compare the performance on ToM tasks between CM-I patients and healthy controls. The protocol includes Faux Pas test, Happé’s Strange Stories test, Ice-Cream Van task, the FEEL test, and the Word Accentuation Test. In order to eliminate the possible influence of covariables, physical pain and anxious-depressive symptomatology have been controlled for. According to the results, CM-I patients performed worse than matched healthy controls on ToM tasks, except for facial emotion recognition. These differences remained even after controlling for the neuropsychiatric variables and physical pain. Thus, it can be suggested that patients with CM-I are impaired in their social skills related to their performance on ToM tasks. These findings can be considered to be a preliminary approach to the specific study of social cognition in relation to CM-I since it is similar to other cerebellar pathologies and to previous literature on the cerebellum’s role in social cognition.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Hoche F, Guell X, Sherman JC, Vangel MG, Schmahmann JD. Cerebellar contribution to social cognition. Cerebellum. 2016;15(6):732–43. https://doi.org/10.1007/s12311-015-0746-9.

  2. 2.

    Van Overwalle F, D’aes T, Mariën P. Social cognition and the cerebellum: a meta-analytic connectivity analysis. Hum Brain Mapp. 2015;36(12):5137–54. https://doi.org/10.1002/hbm.23002.

  3. 3.

    Tirapu J, Pérez G, Erekatxo M, Pelegrín C. ¿Qué es la teoría de la mente? Rev Neurol. 2007;44(8):479–89.

  4. 4.

    Abu-Akel A. A neurobiological mapping of theory of mind. Brain Res Rev. 2003;43(1):29–40. https://doi.org/10.1016/S0165-0173(03)00190-5.

  5. 5.

    Clausi S, Olivito G, Lupo M, Siciliano L, Bozzali M, Leggio M. The cerebellar predictions for social interactions: theory of mind abilities in patients with degenerative cerebellar atrophy. Front Cell Neurosci. 2019;12(510):1–16. https://doi.org/10.3389/fncel.2018.00510.

  6. 6.

    Van Overwalle F, Baetens K, Mariën P, Vandekerckhove M. Cerebellar areas dedicated to social cognition? A comparison of meta-analytic and connectivity results. Soc Neurosci. 2015;10(4):337–44. https://doi.org/10.1080/17470919.2015.1005666.

  7. 7.

    Van Overwalle F, Mariën P. Functional connectivity between the cerebrum and cerebellum in social cognition: a multi-study analysis. Neuroimage. 2016;124(Pt A):248–55. https://doi.org/10.1016/j.neuroimage.2015.09.001.

  8. 8.

    Van Overwalle F, Baetens K, Mariën P, Vandekerckhove M. Social cognition and the cerebellum: a meta-analysis of over 350 fMRI studies. NeuroImage. 2014;86:554–72. https://doi.org/10.1016/j.neuroimage.2013.09.033.

  9. 9.

    Manto M, Mariën P. Schmahmann’s syndrome—identification of the third cornerstone of clinical ataxiology. Cerebellum Ataxias. 2015;2(2):1–5. https://doi.org/10.1186/s40673-015-0023-1.

  10. 10.

    Schamahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121(4):561–79.

  11. 11.

    Schmahmann JD, Weilburg JB, Sherman JC. The neuropsychiatry of the cerebellum—insights from the clinic. Cerebellum. 2007;6(3):254–67. https://doi.org/10.1080/14734220701490995.

  12. 12.

    Garrard P, Martin NH, Giunti P, Cipolotti L. Cognitive and social cognitive functioning in spinocerebellar ataxia. J Neurol. 2008;255(3):398–405. https://doi.org/10.1007/s00415-008-0680-6.

  13. 13.

    Sokolovsky N, Cook A, Hunt H, Giunti P, Cipolotti L. A preliminary characterization of cognition and social cognition in spinocerebellar ataxia types 2, 1 and 7. Behav Neurol. 2010;23(1–2):17–29. https://doi.org/10.3233/BEN-2010-0270.

  14. 14.

    D’Agata F, Caroppo P, Baudino B, Caglio M, Croce M, Bergui M, et al. The recognition of facial emotions in spinocerebellar ataxia patients. Cerebellum. 2011;10(3):600–10. https://doi.org/10.1007/s12311-011-0276-z.

  15. 15.

    Costabile T, Capretti V, Abate F, Liguori A, Paciello F, Pane C, et al. Emotion recognition and psychological comorbidity in Friedreich’s ataxia. Cerebellum. 2018;17(3):336–45. https://doi.org/10.1007/s12311-018-0918-5.

  16. 16.

    Tubbs RS, Oakes WJ. Introduction and classification of the Chiari malformations. In: Tubbs RS, Oakes WJ, editors. The Chiari malformations; 2013. p. 1–3. https://doi.org/10.1007/978-1-4614-6369-6_2.

  17. 17.

    Rogers JM, Savage G, Stoodley MA. A systematic review of cognition in Chiari I malformation. Neuropsychol Rev. 2018;28(2):176–87. https://doi.org/10.1007/s11065-018-9368-6.

  18. 18.

    García M, Lázaro E, López-Paz JF, Martínez O, Pérez M, Berrocoso S, et al. Cognitive functioning in Chiari malformation type I without posterior fossa surgery. Cerebellum. 2018a;17(5):564–74. https://doi.org/10.1007/s12311-018-0940-7.

  19. 19.

    García M, Amayra I, Lázaro E, López-Paz JF, Martínez O, Pérez M, et al. Comparison between decompressed and non-decompressed Chiari malformation type I patients: a neuropsychological study. Neuropsychologia. 2018b;121:135–43. https://doi.org/10.1016/j.neuropsychologia.2018.11.002.

  20. 20.

    Houston JR, Hughes ML, Lien MC, Martin BA, Loth F, Luciano MG, et al. An electrophysiological study of cognitive and emotion processing in type I Chiari malformation. Cerebellum. 2018;17(4):404–18. https://doi.org/10.1007/s12311-018-0923-8.

  21. 21.

    García, M.A., Allen, P.A., Li, X., Houston, J.R., Loth, F., Labuda, R., & Delahanty, D.L. (2019). An examination of pain, disability, and the psychological correlates of Chiari malformation pre- and post-surgical correction. Disabil Health J. Advanced online publication doi: https://doi.org/10.1016/j.dhjo.2019.05.004.

  22. 22.

    Lázaro E, García M, Amayra I, López-Paz JF, Martínez O, Pérez M, et al. Anxiety and depression in Chiari malformation. J Integr Neurosci. 2018;17(4):343–8. https://doi.org/10.31083/j.jin.2018.04.0414.

  23. 23.

    Stone VE, Baron-Cohen S, Knight RT. Frontal lobe contributions to theory of mind. J Cogn Neurosci. 1998;10:640–56.

  24. 24.

    Serrano, C. (2018). Faux Pas test (adult)—Español. [Web page] retrieved from http://www.autismresearchcentre.com/arc_tests. Accessed October 2017

  25. 25.

    Happé F. An advanced test of theory of mind: understanding of story characters’ thoughts and feelings by able autistic, mentally handicapped, and normal children and adults. J Autism Dev Disord. 1994;24:129–54.

  26. 26.

    Pousa E (2002) Measurement of theory of mind in healthy adolescents: translation and cultural adaptation of F. Happé’s theory of mind stories (1999). (Doctoral thesis, Autonomous University of Barcelona, Spain).

  27. 27.

    Perner J, Wimmer H. “John thinks that Mary thinks that….”: attribution of second-order beliefs by 5- to 10-year-old children. J Exp Child Psychol. 1985;39(3):437–71. https://doi.org/10.1016/0022-0965(85)90051-7.

  28. 28.

    Montoya MM, Molina-Cobos FJ. Evaluación de relaciones deícticas y teoría de la mente con una muestra de estudiantes universitarios. Int J Psychol Psychol Ther. 2015;15(2):191–203.

  29. 29.

    Kessler H, Bayerl P, Deighton RM, Traue HC. Facially expressed emotion labeling (FEEL): PC-gestützer test zur emotions erkennung. Verhaltenstherapie und Verhaltensmedizin. 2002;23(3):297–306.

  30. 30.

    Lázaro E, Amayra I, López-Paz JF, Martínez O, Pérez M, Berrocoso S, et al. Instrument for assessing the ability to identify emotional facial expressions in healthy children and in children with ADHD: the FEEL test. J Atten Disord. 2016:1–7. https://doi.org/10.1177/1087054716682335.

  31. 31.

    Nelson HE, O’Conell A. Dementia: the estimation of premorbid intelligence levels using the new adult reading test. Cortex. 1978;14:234–44.

  32. 32.

    Del Ser T, González-Montalvo JI, Martínez-Espinosa S, Delgado-Villapalos C, Bermejo F. Estimation of premorbid intelligence in Spanish people with the word accentuation test and its application to the diagnosis of dementia. Brain Cogn. 1997;33(3):343–56. https://doi.org/10.1006/brcg.1997.0877.

  33. 33.

    Zigmond A, Snaith R. The hospital anxiety and depression scale. Acta Psychiatr Scand. 1983;67:361–70.

  34. 34.

    Herrero MJ, Blanch J, Peri JM, De Pablo J, Pintor L, Bulbena A. A validation study of the hospital anxiety and depression scale (HADS) in a Spanish population. Gen Hosp Psychiatry. 2003;25(3):277–83.

  35. 35.

    Jacobson GP, Ramadan NM, Aggarwal SK, Newman CW. The Henry Ford hospital headache disability inventory (HDI). Neurology. 1994;44(5):837–42.

  36. 36.

    Rodríguez L, Cano FJ, Blanco A. Conductas de dolor y discapacidad en migrañas y cefaleas tensionales. Adaptación española del pain behavior questionnaire (PBQ) y del headache disability inventory (HDI). Análisis y Modificación de Conducta. 2000;26(109):739–62.

  37. 37.

    Vernon H, Mior S. The neck disability index: a study of reliability and validity. J Manipulative Physiol Ther. 1991;14(7):409–15.

  38. 38.

    Andrade JA, Delgado AD, Almécija R. Validation of the Spanish version of the neck disability index. Spine. 2010;35(4):114–8. https://doi.org/10.1097/BRS.0b013e3181afea5d.

  39. 39.

    Fairbank JC, Couper J, Davies JB, O’Brien JP. The Oswestry low back pain questionnaire. Physiotherapy. 1980;66(8):271–3.

  40. 40.

    Flórez MT, García MA, García F, Armenteros J, Álvarez A, Martínez MD. Adaptación transcultural a la población española de la escala de incapacidad por dolor lumbar de Oswestry. Rehabilitación. 1995;29:138–45.

  41. 41.

    Oakley BFM, Brewer R, Bird G, Catmur C. Theory of mind is not theory of emotion: a cautionary note on the reading the mind in the eyes test. J Abnorm Psychol. 2016;125(6):818–23. https://doi.org/10.1037/abn0000182.

  42. 42.

    Guell X, Gabrieli JDE, Schmahmann JD. Embodied cognition and the cerebellum: perspectives from the dysmetria of thought and the universal cerebellar transform theories. Cortex. 2018;100:140–8. https://doi.org/10.1016/j.cortex.2017.07.005.

  43. 43.

    Olivito G, Clausi S, Laghi F, Tedesco AM, Baiocco R, Mastropasqua C, et al. Resting-state functional connectivity changes between dentate nucleus and cortical social brain regions in autism spectrum disorders. Cerebellum. 2017;16(2):283–92. https://doi.org/10.1007/s12311-016-0795-8.

  44. 44.

    Laird AR, Fox PM, Eickhoff SB, Turner JA, Ray KI, McKay DR, et al. Behavioral interpretations of intrinsic connectivity networks. J Cogn Neurosci. 2011;23(12):4022–37. https://doi.org/10.1162/jocn_a_00077.

  45. 45.

    Buckner RL, Krienen FM, Castellanos A, Diaz JC, Yeo BT. The organization of the human cerebellum estimated by intrinsic functional connectivity. J Neurophysiol. 2011;106(5):2322–22345. https://doi.org/10.1152/jn.00339.2011.

  46. 46.

    Kurtcan S, Alkan A, Yetis H, Tuzu U, Aralasmak A, Toprak H, et al. Diffusion tensor imaging findings of the brainstem in subjects with tonsillar ectopia. Acta Neurol Belg. 2018;118(1):39–45. https://doi.org/10.1007/s13760-017-0792-9.

  47. 47.

    Kumar M, Rathore RK, Srivastava A, Yadav SK, Behari S, Gupta RK. Correlation of diffusion tensor imaging metrics with neurocognitive function in Chiari I malformation. World Neurosurg. 2011;76(1–2):189–94. https://doi.org/10.1016/j.wneu.2011.02.022.

  48. 48.

    Leggio M, Olivito G. Topography of the cerebellum in relation to social brain regions and emotions. Handb Clin Neurol. 2018;154:71–84. https://doi.org/10.1016/B978-0-444-63956-1.00005-9.

  49. 49.

    Mar RA. The neural bases of social cognition and story comprehension. Annu Rev Psychol. 2011;62:103–34. https://doi.org/10.1146/annurev-psych-120709-145406.

  50. 50.

    Van Overwalle F, Heleven E, Ma N, Mariën P. Tell me twice: a multi-study analysis of the functional connectivity between the cerebrum and cerebellum after repeated trait information. Neuroimage. 2017;144(Pt a):241–52. https://doi.org/10.1016/j.neuroimage.2016.08.046.

  51. 51.

    Van Overwalle F, De Coninck S, Heleven E, Perrotta G, Taib NOB, Manto M, et al. The role of the cerebellum in reconstructing social action sequences: a pilot study. Soc Cogn Affect Neurosci. 2019;14(5):549–58. https://doi.org/10.1093/scan/nsz032.

  52. 52.

    Heleven E, van Dun K, Van Overvalle F. The posterior cerebellum is involved in constructing social action sequences: an fMRI study. Sci Rep. 2019;9(1):1–11. https://doi.org/10.1038/s41598-019-46962-7.

Download references

Acknowledgements

We thank ChySPA and all of the participants for their involvement in the study and their effort.

Funding

This study was funded by a grant from the Education Department of the Basque Government’s ‘Programa Predoctoral de Formación de Personal Investigador No Doctor’ (PRE_2016_1_0099 to Maitane García).

Author information

Correspondence to Maitane García.

Ethics declarations

Conflict of Interest

The co-authors declare that they have no conflict of interest.

Ethical Approval and Informed Consent

All procedures performed in this study were developed in accordance with the ethical standards and with the 1964 Helsinki declaration and its later amendments. Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

García, M., Amayra, I., López-Paz, J.F. et al. Social Cognition in Chiari Malformation Type I: a Preliminary Characterization. Cerebellum (2020). https://doi.org/10.1007/s12311-020-01117-7

Download citation

Keywords

  • Chiari malformation type I
  • Cerebellum
  • Social cognition
  • Theory of Mind