Embryonic Cerebellar Graft Morphology Differs in Two Mouse Models of Cerebellar Degeneration

  • Zdenka Purkartova
  • Filip Tichanek
  • Yaroslav Kolinko
  • Jan CendelinEmail author
Original Paper


Cerebellar diseases causing substantial cell loss often lead to severe functional deficits and restoration of cerebellar function is difficult. Neurotransplantation therapy could become a hopeful method, but there are still many limitations and unknown aspects. Studies in a variety of cerebellar mutant mice reflecting heterogeneity of human cerebellar degenerations show promising results as well as new problems and questions to be answered. The aim of this work was to compare the development of embryonic cerebellar grafts in adult B6CBA Lurcher and B6.BR pcd mutant mice and strain-matched healthy wild type mice. Performance in the rotarod test, graft survival, structure, and volume was examined 2 months after the transplantation or sham-operation. The grafts survived in most of the mice of all types. In both B6CBA and B6.BR wild type mice and in pcd mice, colonization of the host’s cerebellum was a common finding, while in Lurcher mice, the grafts showed a low tendency to infiltrate the host’s cerebellar tissue. There were no significant differences in graft volume between mutant and wild type mice. Nevertheless, B6CBA mice had smaller grafts than their B6.BR counterparts. The transplantation did not improve the performance in the rotarod test. The study showed marked differences in graft integration into the host’s cerebellum in two types of cerebellar mutants, suggesting disease-specific factors influencing graft fate.


Ataxia Cerebellar degeneration Lurcher mouse Neurotransplantation Pcd mouse 


Funding information

This publication was supported by the Charles University Grant Agency grant 716217; the National Sustainability Program I (NPU I) No. LO1503 provided by the Ministry of Education, Youth and Sports of the Czech Republic; the Charles University Research Fund (project number Q39); and the student-specific research project of Charles University No. 260 394.

Compliance with Ethical Standards

All experimental procedures were performed in compliance with EU guidelines for scientific experimentation on animals and with the permission of the Ethical Commission of the Faculty of Medicine in Pilsen.

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Manto MU. The wide spectrum of spinocerebellar ataxias (SCAs). Cerebellum. 2005;4:2–6.CrossRefGoogle Scholar
  2. 2.
    Koziol LF, Budding D, Andreasen N, D'Arrigo S, Bulgheroni S, Imamizu H, et al. Consensus paper: the cerebellum’s role in movement and cognition. Cerebellum. 2014;13:151–77.CrossRefGoogle Scholar
  3. 3.
    Bodranghien F, Bastian A, Casali C, Hallett M, Louis ED, Manto M, et al. Consensus paper: revisiting the symptoms and signs of cerebellar syndrome. Cerebellum. 2016;15:369–91.CrossRefGoogle Scholar
  4. 4.
    Adamaszek M, D'Agata F, Ferrucci R, Habas C, Keulen S, Kirkby KC, et al. Consensus paper: cerebellum and emotion. Cerebellum. 2017;16:552–76.CrossRefGoogle Scholar
  5. 5.
    Lang EJ, Apps R, Bengtsson F, Cerminara NL, De Zeeuw CI, Ebner TJ, et al. The roles of the olivocerebellar pathway in motor learning and motor control. A Consensus Paper. Cerebellum. 2017;16:230–52.CrossRefGoogle Scholar
  6. 6.
    Hilber P, Cendelin J, Le Gall A, Machado ML, Tuma J, Besnard S. Cooperation of the vestibular and cerebellar networks in anxiety disorders and depression. Prog Neuro-Psychopharmacol Biol Psychiatry. 2019;89:310–21.CrossRefGoogle Scholar
  7. 7.
    Lawrenson C, Bares M, Kamondi A, Kovacs A, Lumb B, Apps R, et al. The mystery of the cerebellum: clues from experimental and clinical observations. Cerebellum Ataxias. 2018;5:8.CrossRefGoogle Scholar
  8. 8.
    Mitoma H, Manto M. The physiological basis of therapies for cerebellar ataxias. Ther Adv Neurol Disord. 2016;9:396–413.CrossRefGoogle Scholar
  9. 9.
    Cendelin J, Mitoma H, Manto M. Neurotransplantation therapy and cerebellar reserve. CNS Neurol Disord Drug Targets. 2018;17:172–83.CrossRefGoogle Scholar
  10. 10.
    Cendelin J, Buffo A, Hirai H, Magrassi L, Mitoma H, Sherrard R, et al. Task force paper on cerebellar transplantation: are we ready to treat cerebellar disorders with cell therapy? Cerebellum. 2019;18:575–92.CrossRefGoogle Scholar
  11. 11.
    Manto M, Marmolino D. Animal models of human cerebellar ataxias: a cornerstone for the therapies of the twenty-first century. Cerebellum. 2009;8:137–54.CrossRefGoogle Scholar
  12. 12.
    Phillips RJS. "Lurcher", a new gene in linkage group XI of the house mouse. J Genet. 1960;57:35–42.CrossRefGoogle Scholar
  13. 13.
    Zuo J, De Jager PL, Takahashi KA, Jiang W, Linden DJ, Heintz N. Neurodegeneration in Lurcher mice caused by mutation in delta2 glutamate receptor gene. Nature. 1997;388:769–73.CrossRefGoogle Scholar
  14. 14.
    Araki K, Meguro H, Kushiya E, Takayama C, Inoue Y, Mishina M. Selective expression of the glutamate receptor channel delta 2 subunit in cerebellar Purkinje cells. Biochem Biophys Res Commun. 1993;197:1267–76.CrossRefGoogle Scholar
  15. 15.
    Wetts R, Herrup K. Interaction of granule, Purkinje and inferior olivary neurons in lurcher chimaeric mice. I. Qualitative studies. J Embryol Exp Morpholog. 1982;68:87–98.Google Scholar
  16. 16.
    Wetts R, Herrup K. Interaction of granule, Purkinje and inferior olivary neurons in lurcher chimeric mice. II. Granule cell death. Brain Res. 1982;250:358–62.CrossRefGoogle Scholar
  17. 17.
    Selimi F, Doughty M, Delhaye-Bouchaud N, Mariani J. Target-related and intrinsic neuronal death in Lurcher mutant mice are both mediated by caspase-3 activation. J Neurosci. 2000;20:992–1000.CrossRefGoogle Scholar
  18. 18.
    Dumesnil-Bousez N, Sotelo C. Early development of the Lurcher cerebellum: Purkinje cell alterations and impairment of synaptogenesis. J Neurocytol. 1992;21:506–29.CrossRefGoogle Scholar
  19. 19.
    Yue Z, Horton A, Bravin M, DeJager PL, Selimi F, Heintz N. A novel protein complex linking the delta 2 glutamate receptor and autophagy: implications for neurodegeneration in lurcher mice. Neuron. 2002;35:921–33.CrossRefGoogle Scholar
  20. 20.
    Wang QJ, Ding Y, Kohtz DS, Mizushima N, Cristea IM, Rout MP, et al. Induction of autophagy in axonal dystrophy and degeneration. J Neurosci. 2006;26:8057–68.CrossRefGoogle Scholar
  21. 21.
    Zanjani HS, Lohof AM, McFarland R, Vogel MW, Mariani J. Enhanced survival of wild-type and Lurcher Purkinje cells in vitro following inhibition of conventional PKCs or stress-activated MAP kinase pathways. Cerebellum. 2013;12:377–89.CrossRefGoogle Scholar
  22. 22.
    Caddy KW, Biscoe TJ. Structural and quantitative studies on the normal C3H and Lurcher mutant mouse. Philos Trans R Soc Lond Ser B Biol Sci. 1979;287:167–201.CrossRefGoogle Scholar
  23. 23.
    Zanjani SH, Selimi F, Vogel MW, Haeberle AM, Boeuf J, Mariani J, et al. Survival of interneurons and parallel fiber synapses in a cerebellar cortex deprived of Purkinje cells: studies in the double mutant mouse Grid2Lc/+;Bax(−/−). J Comp Neurol. 2006;497:622–35.CrossRefGoogle Scholar
  24. 24.
    Sultan F, Konig T, Mock M, Thier P. Quantitative organization of neurotransmitters in the deep cerebellar nuclei of the Lurcher mutant. J Comp Neurol. 2002;452:311–23.CrossRefGoogle Scholar
  25. 25.
    Coutelier M, Burglen L, Mundwiller E, Abada-Bendib M, Rodriguez D, Chantot-Bastaraud S, et al. GRID2 mutations span from congenital to mild adult-onset cerebellar ataxia. Neurology. 2015;84:1751–9.CrossRefGoogle Scholar
  26. 26.
    Fernandez-Gonzalez A, La Spada AR, Treadaway J, Higdon JC, Harris BS, Sidman RL, et al. Purkinje cell degeneration (pcd) phenotypes caused by mutations in the axotomy-induced gene, Nna1. Science. 2002;295:1904–6.CrossRefGoogle Scholar
  27. 27.
    Kyuhou S, Kato N, Gemba H. Emergence of endoplasmic reticulum stress and activated microglia in Purkinje cell degeneration mice. Neurosci Lett. 2006;396:91–6.CrossRefGoogle Scholar
  28. 28.
    Chakrabarti L, Eng J, Ivanov N, Garden GA, La Spada AR. Autophagy activation and enhanced mitophagy characterize the Purkinje cells of pcd mice prior to neuronal death. Mol Brain. 2009;2:24.CrossRefGoogle Scholar
  29. 29.
    Baltanas FC, Berciano MT, Valero J, Gomez C, Diaz D, Alonso JR, et al. Differential glial activation during the degeneration of Purkinje cells and mitral cells in the PCD mutant mice. Glia. 2013;61:254–72.CrossRefGoogle Scholar
  30. 30.
    Mullen RJ, Eicher EM, Sidman RL. Purkinje cell degeneration, a new neurological mutation in the mouse. Proc Natl Acad Sci U S A. 1976;73:208–12.CrossRefGoogle Scholar
  31. 31.
    Ghetti B, Norton J, Triarhou LC. Nerve cell atrophy and loss in the inferior olivary complex of "Purkinje cell degeneration" mutant mice. J Comp Neurol. 1987;260:409–22.CrossRefGoogle Scholar
  32. 32.
    Triarhou LC. Biological clues on neuronal degeneration based on theoretical fits of decay patterns: towards a mathematical neuropathology. Folia Neuropathol. 2010;48:3–10.Google Scholar
  33. 33.
    Triarhou LC, Norton J, Ghetti B. Anterograde transsynaptic degeneration in the deep cerebellar nuclei of Purkinje cell degeneration (pcd) mutant mice. Exp Brain Res. 1987;66:577–88.CrossRefGoogle Scholar
  34. 34.
    Blanks JC, Mullen RJ, LaVail MM. Retinal degeneration in the pcd cerebellar mutant mouse. II. Electron microscopic analysis. J Comp Neurol. 1982;212:231–46.CrossRefGoogle Scholar
  35. 35.
    LaVail MM, Blanks JC, Mullen RJ. Retinal degeneration in the pcd cerebellar mutant mouse. I. Light microscopic and autoradiographic analysis. J Comp Neurol. 1982;212:217–30.CrossRefGoogle Scholar
  36. 36.
    Blanks JC, Spee C. Retinal degeneration in the pcd/pcd mutant mouse: accumulation of spherules in the interphotoreceptor space. Exp Eye Res. 1992;54:637–44.CrossRefGoogle Scholar
  37. 37.
    O'Gorman S, Sidman RL. Degeneration of thalamic neurons in “Purkinje cell degeneration” mutant mice. I. Distribution of neuron loss. J Comp Neurol. 1985;234:277–97.CrossRefGoogle Scholar
  38. 38.
    Sotelo C, Alvarado-Mallart RM. Embryonic and adult neurons interact to allow Purkinje cell replacement in mutant cerebellum. Nature. 1987;327:421–3.CrossRefGoogle Scholar
  39. 39.
    Triarhou LC, Low WC, Ghetti B. Transplantation of cerebellar anlagen to hosts with genetic cerebellocortical atrophy. Anat Embryol (Berl). 1987;176:145–54.CrossRefGoogle Scholar
  40. 40.
    Dumesnil-Bousez N, Sotelo C. Partial reconstruction of the adult Lurcher cerebellar circuitry by neural grafting. Neuroscience. 1993;55:1–21.CrossRefGoogle Scholar
  41. 41.
    Tomey DA, Heckroth JA. Transplantation of normal embryonic cerebellar cell suspensions into the cerebellum of lurcher mutant mice. Exp Neurol. 1993;122:165–70.CrossRefGoogle Scholar
  42. 42.
    Heckroth JA, Hobart NJ, Summers D. Transplanted neurons alter the course of neurodegenerative disease in Lurcher mutant mice. Exp Neurol. 1998;154:336–52.CrossRefGoogle Scholar
  43. 43.
    Cendelin J, Korelusova I, Vozeh F. A preliminary study of solid embryonic cerebellar graft survival in adult B6CBA Lurcher mutant and wild type mice. Anat Rec (Hoboken). 2009;292:1986–92.CrossRefGoogle Scholar
  44. 44.
    Triarhou LC, Zhang W, Lee WH. Graft-induced restoration of function in hereditary cerebellar ataxia. Neuroreport. 1995;6:1827–32.CrossRefGoogle Scholar
  45. 45.
    Triarhou LC, Zhang W, Lee WH. Amelioration of the behavioral phenotype in genetically ataxic mice through bilateral intracerebellar grafting of fetal Purkinje cells. Cell Transplant. 1996;5:269–77.CrossRefGoogle Scholar
  46. 46.
    Babuska V, Houdek Z, Tuma J, Purkartova Z, Tumova J, Kralickova M, et al. Transplantation of embryonic cerebellar grafts improves gait parameters in ataxic Lurcher mice. Cerebellum. 2015;14:632–41.CrossRefGoogle Scholar
  47. 47.
    Cendelin J, Purkartova Z, Kubik J, Ulbricht E, Tichanek F, Kolinko Y. Long-term development of embryonic cerebellar grafts in two strains of Lurcher mice. Cerebellum. 2018;17:428–37.CrossRefGoogle Scholar
  48. 48.
    Gundersen HJ, Jensen EB, Kieu K, Nielsen J. The efficiency of systematic sampling in stereology--reconsidered. J Microsc. 1999;193:199–211.CrossRefGoogle Scholar
  49. 49.
    Ziegel J, Jensen EBV, Dorph-Petersen KA. Variance estimation for generalized Cavalieri estimators. Biometrika. 2011;98:187–98.CrossRefGoogle Scholar
  50. 50.
    R Core Team. R 2017. A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.
  51. 51.
    Pekar S, Brabec M. Marginal models via GLS : a convenient yet neglected tool for the analysis of correlated data in the behavioural sciences. Ethology. 2016;122:621–31.CrossRefGoogle Scholar
  52. 52.
    Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team, 2014. nlme: linear and nonlinear mixed effects models. https://cran.r
  53. 53.
    Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B. 1995;57:289–300.Google Scholar
  54. 54.
    Cendelin J, Babuska V, Korelusova I, Houdek Z, Vozeh F. Long-term survival of solid embryonic cerebellar grafts in Lurcher mice. Neurosci Lett. 2012;515:23–7.CrossRefGoogle Scholar
  55. 55.
    Sotelo C, Alvarado-Mallart RM. Growth and differentiation of cerebellar suspensions transplanted into the adult cerebellum of mice with heredodegenerative ataxia. Proc Natl Acad Sci U S A. 1986;83:1135–9.CrossRefGoogle Scholar
  56. 56.
    Sotelo C, Alvarado-Mallart RM. Reconstruction of the defective cerebellar circuitry in adult Purkinje cell degeneration mutant mice by Purkinje cell replacement through transplantation of solid embryonic implants. Neuroscience. 1987;20:1–22.CrossRefGoogle Scholar
  57. 57.
    Rossi F, Cattaneo E. Opinion: neural stem cell therapy for neurological diseases: dreams and reality. Nat Rev Neurosci. 2002;3:401–9.CrossRefGoogle Scholar
  58. 58.
    Sotelo C, Alvarado-Mallart RM. Cerebellar transplantations in adult mice with heredo-degenerative ataxia. Ann N Y Acad Sci. 1987;495:242–67.CrossRefGoogle Scholar
  59. 59.
    Carletti B, Rossi F. Selective rather than inductive mechanisms favour specific replacement of Purkinje cells by embryonic cerebellar cells transplanted to the cerebellum of adult Purkinje cell degeneration (pcd) mutant mice. Eur J Neurosci. 2005;22:1001–12.CrossRefGoogle Scholar
  60. 60.
    Chintawar S, Hourez R, Ravella A, Gall D, Orduz D, Rai M, et al. Grafting neural precursor cells promotes functional recovery in an SCA1 mouse model. J Neurosci. 2009;29:13126–35.CrossRefGoogle Scholar
  61. 61.
    Houdek Z, Cendelin J, Kulda V, Babuska V, Cedikova M, Kralickova M, et al. Intracerebellar application of P19-derived neuroprogenitor and naive stem cells to Lurcher mutant and wild type B6CBA mice. Med Sci Monit. 2012;18:Br174–80.CrossRefGoogle Scholar
  62. 62.
    Kolinko Y, Cendelin J, Kralickova M, Tonar Z. Smaller absolute quantities but greater relative densities of microvessels are associated with cerebellar degeneration in Lurcher mice. Front Neuroanat. 2016;10:35.CrossRefGoogle Scholar
  63. 63.
    Kolinko Y, Krakorova K, Cendelin J, Tonar Z, Kralickova M. Microcirculation of the brain: morphological assessment in degenerative diseases and restoration processes. Rev Neurosci. 2015;26:75–93.CrossRefGoogle Scholar
  64. 64.
    Vernet-der Garabedian B, Lemaigre-Dubreuil Y, Delhaye-Bouchaud N, Mariani J. Abnormal IL-1beta cytokine expression in the cerebellum of the ataxic mutant mice staggerer and lurcher. Brain Res Mol Brain Res. 1998;62:224–7.CrossRefGoogle Scholar
  65. 65.
    McFarland R, Blokhin A, Sydnor J, Mariani J, Vogel MW. Oxidative stress, nitric oxide, and the mechanisms of cell death in Lurcher Purkinje cells. Dev Neurobiol. 2007;67:1032–46.CrossRefGoogle Scholar
  66. 66.
    Baurle J, Kranda K, Frischmuth S. On the variety of cell death pathways in the Lurcher mutant mouse. Acta Neuropathol. 2006;112:691–702.CrossRefGoogle Scholar
  67. 67.
    Jones J, Jaramillo-Merchan J, Bueno C, Pastor D, Viso-Leon M, Martinez S. Mesenchymal stem cells rescue Purkinje cells and improve motor functions in a mouse model of cerebellar ataxia. Neurobiol Dis. 2010;40:415–23.CrossRefGoogle Scholar
  68. 68.
    Kaemmerer WF, Low WC. Cerebellar allografts survive and transiently alleviate ataxia in a transgenic model of spinocerebellar ataxia type-1. Exp Neurol. 1999;158:301–11.CrossRefGoogle Scholar
  69. 69.
    Fuca E, Guglielmotto M, Boda E, Rossi F, Leto K, Buffo A. Preventive motor training but not progenitor grafting ameliorates cerebellar ataxia and deregulated autophagy in tambaleante mice. Neurobiol Dis. 2017;102:49–59.CrossRefGoogle Scholar
  70. 70.
    Martins CR Jr, Martinez ARM, de Rezende TJR, Branco LMT, Pedroso JL, Barsottini OGP, et al. Spinal cord damage in spinocerebellar ataxia type 1. Cerebellum. 2017;16:792–6.CrossRefGoogle Scholar
  71. 71.
    Beaudin M, Klein CJ, Rouleau GA, Dupre N. Systematic review of autosomal recessive ataxias and proposal for a classification. Cerebellum Ataxias. 2017;4:3.CrossRefGoogle Scholar
  72. 72.
    Porras-Garcia E, Cendelin J, Dominguez-del-Toro E, Vozeh F, Delgado-Garcia JM. Purkinje cell loss affects differentially the execution, acquisition and prepulse inhibition of skeletal and facial motor responses in Lurcher mice. Eur J Neurosci. 2005;21:979–88.CrossRefGoogle Scholar
  73. 73.
    Chen L, Bao S, Lockard JM, Kim JK, Thompson RF. Impaired classical eyeblink conditioning in cerebellar-lesioned and Purkinje cell degeneration (pcd) mutant mice. J Neurosci. 1996;16:2829–38.CrossRefGoogle Scholar
  74. 74.
    Goodlett CR, Hamre KM, West JR. Dissociation of spatial navigation and visual guidance performance in Purkinje cell degeneration (pcd) mutant mice. Behav Brain Res. 1992;47:129–41.CrossRefGoogle Scholar
  75. 75.
    Lalonde R, Thifault S. Absence of an association between motor coordination and spatial orientation in lurcher mutant mice. Behav Genet. 1994;24:497–501.CrossRefGoogle Scholar
  76. 76.
    Tuma J, Kolinko Y, Vozeh F, Cendelin J. Mutation-related differences in exploratory, spatial, and depressive-like behavior in pcd and Lurcher cerebellar mutant mice. Front Behav Neurosci. 2015;9:116.CrossRefGoogle Scholar
  77. 77.
    Kumar A, Narayanan K, Chaudhary RK, Mishra S, Kumar S, Vinoth KJ, et al. Current perspective of stem cell therapy in neurodegenerative and metabolic diseases. Mol Neurobiol. 2016;54:7276–96. Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Pathological Physiology, Faculty of Medicine in PilsenCharles UniversityPlzeňCzech Republic
  2. 2.Laboratory of Neurodegenerative Disorders, Biomedical Center, Faculty of Medicine in PilsenCharles UniversityPlzeňCzech Republic
  3. 3.Department of Histology and Embryology, Faculty of Medicine in PilsenCharles UniversityPlzeňCzech Republic
  4. 4.Laboratory of Quantitative Histology, Biomedical Center, Faculty of Medicine in PilsenCharles UniversityPlzeňCzech Republic

Personalised recommendations