VEMPs and Dysautonomia Assessment in Definite Cerebellar Ataxia, Neuropathy, Vestibular Areflexia Syndrome (CANVAS): a Case Series Study

  • David Moreno-Ajona
  • Laura Álvarez-Gómez
  • Raquel Manrique-Huarte
  • Estefanía Rivas
  • Eduardo Martínez-Vila
  • Nicolás Pérez-FernándezEmail author
Short Report


Cerebellar ataxia with neuropathy and vestibular areflexia syndrome (CANVAS) is a recently described slowly progressive ataxia with severe imbalance due to the compromise of three of the four sensory inputs for balance, leaving only vision unaffected. Bilateral vestibulopathy is present but saccular and utricular function, measured by vestibular evoked myogenic potentials (VEMPs), has not been widely studied in these patients. Dysautonomia has been reported but is not among the diagnostic criteria. We performed a database analysis to identify patients evaluated between 2003 and 2019 with probable diagnosis of CANVAS by using key words “bilateral vestibulopathy and/or cerebellar ataxia and/or sensory polyneuropathy.” Five out of 842 met all conditions. Patients underwent neurological/neurootological exam, brain MRI, visually enhanced vestibulo-ocular reflex (VVOR) exam by high-speed video-oculography using video-Head Impulse Test (vHIT), VEMPs, neurophysiological studies, and genetic tests to exclude other causes of ataxia. Dysautonomia was addressed by the standardized survey of autonomic symptoms. All patients had clinically definite CANVAS as brain MRI showed vermal cerebellar atrophy, neurophysiological studies showed a sensory neuronopathy pattern (absent sensory action potentials), VVOR was abnormal bilaterally, and genetic tests ruled out other causes of ataxia including SCA 3 and Friedreich ataxia. Patients had at least 3 dysautonomic symptoms, including xerostomia/xerophthalmia (5/5). VEMP results varied among patients, ranging from normal to completely abnormal. We found inconsistent results with VEMPs. The utilization of VEMPs in more CANVAS cases will determine its utility in this syndrome. Dysautonomia may be included in the diagnostic criteria.


Cerebellar ataxia Bilateral vestibulopathy Polyneuropathy Dysautonomia 


Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Migliaccio AA, Halmagyi GM, McGarvie LA, Cremer PD. Cerebellar ataxia with bilateral vestibulopathy: description of a syndrome and its characteristic clinical sign. Brain. 2004;127(Pt 2):280–93.CrossRefGoogle Scholar
  2. 2.
    Szmulewicz DJ, Waterston JA, Halmagyi GM, Mossman S, Chancellor AM, McLean CA, et al. Sensory neuropathy as part of the cerebellar ataxia neuropathy vestibular areflexia syndrome. Neurology. 2011;76(22):1903–10.CrossRefGoogle Scholar
  3. 3.
    Szmulewicz DJ, Roberts L, McLean CA, MacDougall HG, Halmagyi GM, Storey E. Proposed diagnostic criteria for cerebellar ataxia with neuropathy and vestibular areflexia syndrome (CANVAS). Neurol Clin Pract. 2016;6(1):61–8.CrossRefGoogle Scholar
  4. 4.
    Szmulewicz DJ, McLean CA, Rodriguez ML, Chancellor AM, Mossman S, Lamont D, et al. Dorsal root ganglionopathy is responsible for the sensory impairment in CANVAS. Neurology. 2014;82(16):1410–5.CrossRefGoogle Scholar
  5. 5.
    Szmulewicz DJ, Seiderer L, Halmagyi GM, Storey E, Roberts L. Neurophysiological evidence for generalized sensory neuronopathy in cerebellar ataxia with neuropathy and bilateral vestibular areflexia syndrome. Muscle Nerve. 2015;51(4):600–3.CrossRefGoogle Scholar
  6. 6.
    Petersen JA, Wichmann WW, Weber KP. The pivotal sign of CANVAS. Neurology. 2013;81(18):1642–3.CrossRefGoogle Scholar
  7. 7.
    Wu TY, Taylor JM, Kilfoyle DH, Smith AD, McGuinness BJ, Simpson MP, et al. Autonomic dysfunction is a major feature of cerebellar ataxia, neuropathy, vestibular areflexia ‘CANVAS’ syndrome. Brain. 2014;137(Pt 10):2649–56.CrossRefGoogle Scholar
  8. 8.
    Strupp M, Kim JS, Murofushi T, Straumann D, Jen JC, Rosengren SM, et al. Bilateral vestibulopathy: diagnostic criteria consensus document of the Classification Committee of the Barany Society. J Vestib Res. 2017;27(4):177–89.CrossRefGoogle Scholar
  9. 9.
    Rust H, Peters N, Allum JHJ, Wagner B, Honegger F, Baumann T. VEMPs in a patient with cerebellar ataxia, neuropathy and vestibular areflexia (CANVAS). J Neurol Sci. 2017;378:9–11.CrossRefGoogle Scholar
  10. 10.
    Rey-Martinez J, Batuecas-Caletrio A, Matino E, Trinidad-Ruiz G, Altuna X, Perez-Fernandez N. Mathematical methods for measuring the visually enhanced vestibulo-ocular reflex and preliminary results from healthy subjects and patient groups. Front Neurol. 2018;9:69.CrossRefGoogle Scholar
  11. 11.
    Guajardo-Vergara C, Pérez-Fernandez N. Air and bone stimulation in vestibular evoked myogenic potentials in patients with unilateral Ménière’s disease and in controls, Hearing, Balance and Communication. 2019; 17: 170-8,
  12. 12.
    Zilliox L, Peltier AC, Wren PA, Anderson A, Smith AG, Singleton JR, et al. Assessing autonomic dysfunction in early diabetic neuropathy: the survey of autonomic symptoms. Neurology. 2011;76(12):1099–105.CrossRefGoogle Scholar
  13. 13.
    Li C, Layman AJ, Carey JP, Agrawal Y. Epidemiology of vestibular evoked myogenic potentials: data from the Baltimore longitudinal study of aging. Clin Neurophysiol. 2015;126(11):2207–15.CrossRefGoogle Scholar
  14. 14.
    Oh SY, Kim HJ, Kim JS. Vestibular-evoked myogenic potentials in central vestibular disorders. J Neurol. 2016;263(2):210–20.CrossRefGoogle Scholar
  15. 15.
    Szmulewicz DJ, Merchant SN, Halmagyi GM. Cerebellar ataxia with neuropathy and bilateral vestibular areflexia syndrome: a histopathologic case report. Otol Neurotol. 2011;32(8):e63–5.CrossRefGoogle Scholar
  16. 16.
    Manzari L, Burgess AM, McGarvie LA, Curthoys IS. An indicator of probable semicircular canal dehiscence: ocular vestibular evoked myogenic potentials to high frequencies. Otolaryngol Head Neck Surg. 2013;149(1):142–5.CrossRefGoogle Scholar
  17. 17.
    Zingler VC, Weintz E, Jahn K, Huppert D, Cnyrim C, Brandt T, et al. Causative factors, epidemiology, and follow-up of bilateral vestibulopathy. Ann N Y Acad Sci. 2009;1164:505–8.CrossRefGoogle Scholar
  18. 18.
    Cortese A, Simone R, Sullivan R, Vandrovcova J, Tariq H, Yau WY, et al. Biallelic expansion of an intronic repeat in RFC1 is a common cause of late-onset ataxia. Nat Genet. 2019;51(4):649–58.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de NeurologíaClínica Universidad de NavarraPamplonaSpain
  2. 2.Departamento de OtorrinolaringologíaClínica Universidad de NavarraPamplonaSpain
  3. 3.Departamento de NeurofisiologíaClínica Universidad de NavarraPamplonaSpain
  4. 4.Departamento de OtorrinolaringologíaClínica Universidad de NavarraMadridSpain

Personalised recommendations