Task Force Paper On Cerebellar Transplantation: Are We Ready to Treat Cerebellar Disorders with Cell Therapy?

  • Jan Cendelin
  • Annalisa Buffo
  • Hirokazu Hirai
  • Lorenzo Magrassi
  • Hiroshi Mitoma
  • Rachel Sherrard
  • Frantisek Vozeh
  • Mario MantoEmail author


Restoration of damaged central nervous system structures, functional recovery, and prevention of neuronal loss during neurodegenerative diseases are major objectives in cerebellar research. The highly organized anatomical structure of the cerebellum with numerous inputs/outputs, the complexity of cerebellar functions, and the large spectrum of cerebellar ataxias render therapies of cerebellar disorders highly challenging. There are currently several therapeutic approaches including motor rehabilitation, neuroprotective drugs, non-invasive cerebellar stimulation, molecularly based therapy targeting pathogenesis of the disease, and neurotransplantation. We discuss the goals and possible beneficial mechanisms of transplantation therapy for cerebellar damage and its limitations and factors determining outcome.


Ataxias Cerebellum Cerebellar reserve Neurotransplantation Stem cells 


Authors’ Contribution

The authors were responsible for drafting specific sections, and all of them revised and contributed to the entire article.

Funding Information

This work was supported by the National Sustainability Program I (NPU I) (no. LO1503) provided by the Ministry of Education, Youth and Sports of the Czech Republic; by the Charles University Research Fund (project number Q39), MEXT KAKENHI (grant number 15H04254); and by the Gunma University Initiative for Advanced Research (GIAR), Funds of the University of Turin and of the Ministero dell’Istruzione, dell’Università e della Ricerca (MIUR) project “Dipartimenti di Eccellenza 2018–2022” to the Department of Neuroscience, University of Turin.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Rossi F, Cattaneo E. Opinion: neural stem cell therapy for neurological diseases: dreams and reality. Nat Rev Neurosci. 2002;3:401–9.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Carletti B, Piemonte F, Rossi F. Neuroprotection: the emerging concept of restorative neural stem cell biology for the treatment of neurodegenerative diseases. Curr Neuropharmacol. 2011;9:313–7.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Cendelin J. Experimental neurotransplantation treatment for hereditary cerebellar ataxias. Cerebellum Ataxias. 2016a;3:7.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Cendelin J. Transplantation and stem cell therapy for cerebellar degenerations. Cerebellum. 2016b;15:48–50.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Kumar A, Narayanan K, Chaudhary RK, Mishra S, Kumar S, Vinoth KJ, et al. Current perspective of stem cell therapy in neurodegenerative and metabolic diseases. Mol Neurobiol. 2017;54(9):7276–96.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Cendelin J, Mitoma H, Manto M. Neurotransplantation therapy and cerebellar reserve. CNS Neurol Disord Drug Targets. 2018a;17(3):172–83.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Grade S, Gotz M. Neuronal replacement therapy: previous achievements and challenges ahead. NPJ Regener Med. 2017;2:29.CrossRefGoogle Scholar
  8. 8.
    Parmar M. Towards stem cell based therapies for Parkinson’s disease. Development. 2018;145(1):dev156117.
  9. 9.
    Barker RA, Barrett J, Mason SL, Bjorklund A. Fetal dopaminergic transplantation trials and the future of neural grafting in Parkinson’s disease. Lancet Neurol. 2013;12:84–91.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Barker RA, Studer L, Cattaneo E, Takahashi J. G-Force PD: a global initiative in coordinating stem cell-based dopamine treatments for Parkinson’s disease. NPJ Park Dis. 2015;1:15017.CrossRefGoogle Scholar
  11. 11.
    Sotelo C, Alvarado-Mallart RM. Embryonic and adult neurons interact to allow Purkinje cell replacement in mutant cerebellum. Nature. 1987;327:421–3.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Triarhou LC, Low WC, Ghetti B. Transplantation of cerebellar anlagen to hosts with genetic cerebellocortical atrophy. Anat Embryol. 1987;176:145–54.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Kohsaka S, Takayama H, Ueda T, Toya S, Tsukada Y. Reorganization of cerebellar cell suspension transplanted into the weaver mutant cerebellum and immunohistochemical detection of synaptic formation. Neurosci Res. 1988;6:162–6.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Dumesnil-Bousez N, Sotelo C. Partial reconstruction of the adult Lurcher cerebellar circuitry by neural grafting. Neuroscience. 1993;55:1–21.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Tomey DA, Heckroth JA. Transplantation of normal embryonic cerebellar cell suspensions into the cerebellum of lurcher mutant mice. Exp Neurol. 1993;122:165–70.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Heckroth JA, Hobart NJ, Summers D. Transplanted neurons alter the course of neurodegenerative disease in Lurcher mutant mice. Exp Neurol. 1998;154:336–52.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Cendelin J, Korelusova I, Vozeh F. A preliminary study of solid embryonic cerebellar graft survival in adult B6CBA Lurcher mutant and wild type mice. Anat Rec (Hoboken). 2009;292:1986–92.CrossRefGoogle Scholar
  18. 18.
    Cendelin J, Babuska V, Korelusova I, Houdek Z, Vozeh F. Long-term survival of solid embryonic cerebellar grafts in Lurcher mice. Neurosci Lett. 2012;515:23–7.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Purkartova Z, Tuma J, Pesta M, Kulda V, Hajkova L, Sebesta O, et al. Morphological analysis of embryonic cerebellar grafts in SCA2 mice. Neurosci Lett. 2014;558:154–8.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Cendelin J, Purkartova Z, Kubik J, Ulbricht E, Tichanek F, Kolinko Y. Long-term development of embryonic cerebellar grafts in two strains of lurcher mice. Cerebellum. 2018b;17(4):428–37.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Li J, Imitola J, Snyder EY, Sidman RL. Neural stem cells rescue nervous Purkinje neurons by restoring molecular homeostasis of tissue plasminogen activator and downstream targets. J Neurosci. 2006;26:7839–48.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Roybon L, Ma Z, Asztely F, Fosum A, Jacobsen SE, Brundin P, et al. Failure of transdifferentiation of adult hematopoietic stem cells into neurons. Stem Cells. 2006;24:1594–604.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Sidman RL, Li J, Stewart GR, Clarke J, Yang W, Snyder EY, et al. Injection of mouse and human neural stem cells into neonatal Niemann-Pick A model mice. Brain Res. 2007;1140:195–204.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Chen KA, Lanuto D, Zheng T, Steindler DA. Transplantation of embryonic and adult neural stem cells in the granuloprival cerebellum of the weaver mutant mouse. Stem Cells. 2009;27:1625–34.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Chintawar S, Hourez R, Ravella A, Gall D, Orduz D, Rai M, et al. Grafting neural precursor cells promotes functional recovery in an SCA1 mouse model. J Neurosci. 2009;29:13126–35.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Jaderstad J, Jaderstad LM, Li J, Chintawar S, Salto C, Pandolfo M, et al. Communication via gap junctions underlies early functional and beneficial interactions between grafted neural stem cells and the host. Proc Natl Acad Sci U S A. 2010;107:5184–9.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Takayama H, Kohsaka S, Shinozaki T, Inoue H, Toya S, Ueda T, et al. Immunohistochemical studies on synapse formation by embryonic cerebellar tissue transplanted into the cerebellum of the weaver mutant mouse. Neurosci Lett. 1987;79:246–50.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Takayama H, Toya S, Shinozaki T, Inoue H, Otani M, Kohsaka S, et al. Possible synapse formation by embryonic cerebellar tissue grafted into the cerebellum of the weaver mutant mouse. Acta Neurochir Suppl. 1988;43:154–8.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Gardette R, Alvarado-Mallart RM, Crepel F, Sotelo C. Electrophysiological demonstration of a synaptic integration of transplanted Purkinje cells into the cerebellum of the adult Purkinje cell degeneration mutant mouse. Neuroscience. 1988;24:777–89.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Sotelo C, Alvarado-Mallart RM. The reconstruction of cerebellar circuits. Trends Neurosci. 1991;14:350–5.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Triarhou LC, Zhang W, Lee WH. Graft-induced restoration of function in hereditary cerebellar ataxia. Neuroreport. 1995;6:1827–32.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Triarhou LC, Zhang W, Lee WH. Amelioration of the behavioral phenotype in genetically ataxic mice through bilateral intracerebellar grafting of fetal Purkinje cells. Cell Transplant. 1996;5:269–77.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Kaemmerer WF, Low WC. Cerebellar allografts survive and transiently alleviate ataxia in a transgenic model of spinocerebellar ataxia type-1. Exp Neurol. 1999;158:301–11.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Babuska V, Houdek Z, Tuma J, Purkartova Z, Tumova J, Kralickova M, et al. Transplantation of embryonic cerebellar grafts improves gait parameters in ataxic lurcher mice. Cerebellum. 2015;14:632–41.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Fuca E, Guglielmotto M, Boda E, Rossi F, Leto K, Buffo A. Preventive motor training but not progenitor grafting ameliorates cerebellar ataxia and deregulated autophagy in tambaleante mice. Neurobiol Dis. 2017;102:49–59.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Bae JS, Furuya S, Ahn SJ, Yi SJ, Hirabayashi Y, Jin HK. Neuroglial activation in Niemann-Pick type C mice is suppressed by intracerebral transplantation of bone marrow-derived mesenchymal stem cells. Neurosci Lett. 2005;381:234–6.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Jones J, Jaramillo-Merchan J, Bueno C, Pastor D, Viso-Leon M, Martinez S. Mesenchymal stem cells rescue Purkinje cells and improve motor functions in a mouse model of cerebellar ataxia. Neurobiol Dis. 2010;40:415–23.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Lee H, Lee JK, Min WK, Bae JH, He X, Schuchman EH, et al. Bone marrow-derived mesenchymal stem cells prevent the loss of Niemann-Pick type C mouse Purkinje neurons by correcting sphingolipid metabolism and increasing sphingosine-1-phosphate. Stem Cells. 2010;28:821–31.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Matsuura S, Shuvaev AN, Iizuka A, Nakamura K, Hirai H. Mesenchymal stem cells ameliorate cerebellar pathology in a mouse model of spinocerebellar ataxia type 1. Cerebellum. 2014;13:323–30.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Mendonca LS, Nobrega C, Hirai H, Kaspar BK, Pereira de Almeida L. Transplantation of cerebellar neural stem cells improves motor coordination and neuropathology in Machado-Joseph disease mice. Brain. 2015;138:320–35.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Mitoma H, Manto M. The physiological basis of therapies for cerebellar ataxias. Ther Adv Neurol Disord. 2016;9:396–413.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Bae JS, Carter JE, Jin HK. Adipose tissue-derived stem cells rescue Purkinje neurons and alleviate inflammatory responses in Niemann-Pick disease type C mice. Cell Tissue Res. 2010;340:357–69.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Martins LF, Costa RO, Pedro JR, Aguiar P, Serra SC, Teixeira FG, et al. Mesenchymal stem cells secretome-induced axonal outgrowth is mediated by BDNF. Sci Rep. 2017;7:4153.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Reidling JC, Relano-Gines A, Holley SM, Ochaba J, Moore C, Fury B, et al. Human neural stem cell transplantation rescues functional deficits in R6/2 and Q140 Huntington’s disease mice. Stem Cell Rep. 2018;10:58–72.CrossRefGoogle Scholar
  45. 45.
    Carter AR, Chen C, Schwartz PM, Segal RA. Brain-derived neurotrophic factor modulates cerebellar plasticity and synaptic ultrastructure. J Neurosci. 2002;22:1316–27.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Huang Y, Ko H, Cheung ZH, Yung KK, Yao T, Wang JJ, et al. Dual actions of brain-derived neurotrophic factor on GABAergic transmission in cerebellar Purkinje neurons. Exp Neurol. 2012;233:791–8.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Watson LM, Wong MM, Becker EB. Induced pluripotent stem cell technology for modelling and therapy of cerebellar ataxia. Open Biol. 2015;5:150056.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Wong MMK, Watson LM, Becker EBE. Recent advances in modelling of cerebellar ataxia using induced pluripotent stem cells. J Neurol Neuromedicine. 2017;2:11–5.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Su HL, Muguruma K, Matsuo-Takasaki M, Kengaku M, Watanabe K, Sasai Y. Generation of cerebellar neuron precursors from embryonic stem cells. Dev Biol. 2006;290:287–96.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Salero E, Hatten ME. Differentiation of ES cells into cerebellar neurons. Proc Natl Acad Sci U S A. 2007;104:2997–3002.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Tao O, Shimazaki T, Okada Y, Naka H, Kohda K, Yuzaki M, et al. Efficient generation of mature cerebellar Purkinje cells from mouse embryonic stem cells. J Neurosci Res. 2010;88:234–47.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Muguruma K, Nishiyama A, Ono Y, Miyawaki H, Mizuhara E, Hori S, et al. Ontogeny-recapitulating generation and tissue integration of ES cell-derived Purkinje cells. Nat Neurosci. 2010;13:1171–80.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Higuera GA, Iaffaldano G, Bedar M, Shpak G, Broersen R, Munshi ST, et al. An expandable embryonic stem cell-derived Purkinje neuron progenitor population that exhibits in vivo maturation in the adult mouse cerebellum. Sci Rep. 2017;7:8863.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Wang S, Wang B, Pan N, Fu L, Wang C, Song G, et al. Differentiation of human induced pluripotent stem cells to mature functional Purkinje neurons. Sci Rep. 2015;5:9232.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Ishida Y, Kawakami H, Kitajima H, Nishiyama A, Sasai Y, Inoue H, et al. Vulnerability of Purkinje cells generated from spinocerebellar ataxia type 6 patient-derived iPSCs. Cell Rep. 2016;17:1482–90.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Sundberg M, Tochitsky I, Buchholz DE, Winden K, Kujala V, Kapur K, et al. Purkinje cells derived from TSC patients display hypoexcitability and synaptic deficits associated with reduced FMRP levels and reversed by rapamycin. Mol Psychiatry. 2018;23:2167–83.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Muguruma K, Nishiyama A, Kawakami H, Hashimoto K, Sasai Y. Self-organization of polarized cerebellar tissue in 3D culture of human pluripotent stem cells. Cell Rep. 2015;10:537–50.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Watson LM, Wong MMK, Vowles J, Cowley SA, Becker EBE. A simplified method for generating Purkinje cells from human-induced pluripotent stem cells. Cerebellum. 2018;17:419–27.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Carletti B, Grimaldi P, Magrassi L, Rossi F. Specification of cerebellar progenitors after heterotopic-heterochronic transplantation to the embryonic CNS in vivo and in vitro. J Neurosci. 2002;22:7132–46.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Zhang W, Lee WH, Triarhou LC. Grafted cerebellar cells in a mouse model of hereditary ataxia express IGF-I system genes and partially restore behavioral function. Nat Med. 1996;2:65–71.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Magrassi L, Leto K, Rossi F. Lifespan of neurons is uncoupled from organismal lifespan. Proc Natl Acad Sci U S A. 2013;110:4374–9.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Carletti B, Williams IM, Leto K, Nakajima K, Magrassi L, Rossi F. Time constraints and positional cues in the developing cerebellum regulate Purkinje cell placement in the cortical architecture. Dev Biol. 2008;317:147–60.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Kriks S, Shim JW, Piao J, Ganat YM, Wakeman DR, Xie Z, et al. Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease. Nature. 2011;480:547–51.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Grealish S, Diguet E, Kirkeby A, Mattsson B, Heuer A, Bramoulle Y, et al. Human ESC-derived dopamine neurons show similar preclinical efficacy and potency to fetal neurons when grafted in a rat model of Parkinson’s disease. Cell Stem Cells. 2014;15:653–65.CrossRefGoogle Scholar
  65. 65.
    Michelsen KA, Acosta-Verdugo S, Benoit-Marand M, Espuny-Camacho I, Gaspard N, Saha B, et al. Area-specific reestablishment of damaged circuits in the adult cerebral cortex by cortical neurons derived from mouse embryonic stem cells. Neuron. 2015;85:982–97.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Steinbeck JA, Choi SJ, Mrejeru A, Ganat Y, Deisseroth K, Sulzer D, et al. Optogenetics enables functional analysis of human embryonic stem cell-derived grafts in a Parkinson’s disease model. Nat Biotechnol. 2015;33:204–9.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Falkner S, Grade S, Dimou L, Conzelmann KK, Bonhoeffer T, Gotz M, et al. Transplanted embryonic neurons integrate into adult neocortical circuits. Nature. 2016;539:248–53.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Faedo A, Laporta A, Segnali A, Galimberti M, Besusso D, Cesana E, et al. Differentiation of human telencephalic progenitor cells into MSNs by inducible expression of Gsx2 and Ebf1. Proc Natl Acad Sci U S A. 2017;114:E1234–e42.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Kikuchi T, Morizane A, Doi D, Magotani H, Onoe H, Hayashi T, et al. Human iPS cell-derived dopaminergic neurons function in a primate Parkinson’s disease model. Nature. 2017;548:592–6.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Sotelo C, Alvarado-Mallart RM, Frain M, Vernet M. Molecular plasticity of adult Bergmann fibers is associated with radial migration of grafted Purkinje cells. J Neurosci. 1994;14:124–33.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Miyata T, Nakajima K, Aruga J, Takahashi S, Ikenaka K, Mikoshiba K, et al. Distribution of a reeler gene-related antigen in the developing cerebellum: an immunohistochemical study with an allogeneic antibody CR-50 on normal and reeler mice. J Comp Neurol. 1996;372:215–28.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Miyata T, Nakajima K, Mikoshiba K, Ogawa M. Regulation of Purkinje cell alignment by reelin as revealed with CR-50 antibody. J Neurosci. 1997;17:3599–609.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Rosenfeld JV, Richards LJ, Bartlett PF. Mutant mouse cerebellum does not provide specific signals for the selective migration and development of transplanted Purkinje cells. Neurosci Lett. 1993;155:19–23.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    de Luca A, Vassallo S, Benitez-Temino B, Menichetti G, Rossi F, Buffo A. Distinct modes of neuritic growth in Purkinje neurons at different developmental stages: axonal morphogenesis and cellular regulatory mechanisms. PLoS One. 2009;4:e6848.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Kordower JH, Goetz CG, Chu Y, Halliday GM, Nicholson DA, Musial TF, et al. Robust graft survival and normalized dopaminergic innervation do not obligate recovery in a Parkinson disease patient. Ann Neurol. 2017;81:46–57.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Singer AJ, Clark RA. Cutaneous wound healing. N Engl J Med. 1999;341:738–46.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Krampera M, Franchini M, Pizzolo G, Aprili G. Mesenchymal stem cells: from biology to clinical use. Blood Transfus. 2007;5:120–9.PubMedPubMedCentralGoogle Scholar
  78. 78.
    Johnson TV, DeKorver NW, Levasseur VA, Osborne A, Tassoni A, Lorber B, et al. Identification of retinal ganglion cell neuroprotection conferred by platelet-derived growth factor through analysis of the mesenchymal stem cell secretome. Brain. 2014;137:503–19.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Yang Y, Ye Y, Su X, He J, Bai W, He X. MSCs-derived exosomes and neuroinflammation, neurogenesis and therapy of traumatic brain injury. Front Cell Neurosci. 2017;11:55.PubMedPubMedCentralGoogle Scholar
  80. 80.
    Lo Furno D, Mannino G, Giuffrida R. Functional role of mesenchymal stem cells in the treatment of chronic neurodegenerative diseases. J Cell Physiol. 2018;233:3982–99.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Chang YK, Chen MH, Chiang YH, Chen YF, Ma WH, Tseng CY, et al. Mesenchymal stem cell transplantation ameliorates motor function deterioration of spinocerebellar ataxia by rescuing cerebellar Purkinje cells. J Biomed Sci. 2011;18:54.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Mieda T, Suto N, Iizuka A, Matsuura S, Iizuka H, Takagishi K, et al. Mesenchymal stem cells attenuate peripheral neuronal degeneration in spinocerebellar ataxia type 1 knockin mice. J Neurosci Res. 2016;94:246–52.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Chen KA, Cruz PE, Lanuto DJ, Flotte TR, Borchelt DR, Srivastava A, et al. Cellular fusion for gene delivery to SCA1 affected Purkinje neurons. Mol Cell Neurosci. 2011;47:61–70.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Bae JS, Han HS, Youn DH, Carter JE, Modo M, Schuchman EH, et al. Bone marrow-derived mesenchymal stem cells promote neuronal networks with functional synaptic transmission after transplantation into mice with neurodegeneration. Stem Cells. 2007;25:1307–16.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Huda F, Fan Y, Suzuki M, Konno A, Matsuzaki Y, Takahashi N, et al. Fusion of human fetal mesenchymal stem cells with “degenerating” cerebellar neurons in spinocerebellar ataxia type 1 model mice. PLoS One. 2016;11:e0164202.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Weimann JM, Johansson CB, Trejo A, Blau HM. Stable reprogrammed heterokaryons form spontaneously in Purkinje neurons after bone marrow transplant. Nat Cell Biol. 2003;5:959–66.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Johansson CB, Youssef S, Koleckar K, Holbrook C, Doyonnas R, Corbel SY, et al. Extensive fusion of haematopoietic cells with Purkinje neurons in response to chronic inflammation. Nat Cell Biol. 2008;10:575–83.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Magrassi L, Grimaldi P, Ibatici A, Corselli M, Ciardelli L, Castello S, et al. Induction and survival of binucleated Purkinje neurons by selective damage and aging. J Neurosci. 2007;27:9885–92.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Park HW, Chang JW, Yang YS, Oh W, Hwang JH, Kim DG, et al. The effect of donor-dependent administration of human umbilical cord blood-derived mesenchymal stem cells following focal cerebral ischemia in rats. Exp Neurol. 2015;24:358–65.Google Scholar
  90. 90.
    Sherrard RM, Bower AJ. Climbing fiber development: do neurotrophins have a part to play? Cerebellum. 2002;1:265–75.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Wilkins A, Kemp K, Ginty M, Hares K, Mallam E, Scolding N. Human bone marrow-derived mesenchymal stem cells secrete brain-derived neurotrophic factor which promotes neuronal survival in vitro. Stem Cell Res. 2009;3:63–70.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Dusart I, Airaksinen MS, Sotelo C. Purkinje cell survival and axonal regeneration are age dependent: an in vitro study. J Neurosci. 1997;17:3710–26.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Eisenman LM, Schalekamp MP, Voogd J. Development of the cerebellar cortical efferent projection: an in-vitro anterograde tracing study in rat brain slices. Brain Res Dev Brain Res. 1991;60:261–6.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Goffinet AM. The embryonic development of the cerebellum in normal and reeler mutant mice. Anat Embryol. 1983;168:73–86.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Sergaki MC, Ibanez CF. GFRalpha1 regulates Purkinje cell migration by counteracting NCAM function. Cell Rep. 2017;18:367–79.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Kapfhammer JP. Cellular and molecular control of dendritic growth and development of cerebellar Purkinje cells. Prog Histochem Cytochem. 2004;39:131–82.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Sotelo C, Dusart I. Intrinsic versus extrinsic determinants during the development of Purkinje cell dendrites. Neuroscience. 2009;162:589–600.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Torres-Aleman I, Pons S, Arevalo MA. The insulin-like growth factor I system in the rat cerebellum: developmental regulation and role in neuronal survival and differentiation. J Neurosci Res. 1994;39:117–26.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Nieto-Bona MP, Garcia-Segura LM, Torres-Aleman I. Transynaptic modulation by insulin-like growth factor I of dendritic spines in Purkinje cells. Int J Dev Neurosci. 1997;15:749–54.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Sadakata T, Kakegawa W, Mizoguchi A, Washida M, Katoh-Semba R, Shutoh F, et al. Impaired cerebellar development and function in mice lacking CAPS2, a protein involved in neurotrophin release. J Neurosci. 2007;27:2472–82.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Borghesani PR, Peyrin JM, Klein R, Rubin J, Carter AR, Schwartz PM, et al. BDNF stimulates migration of cerebellar granule cells. Development. 2002;129:1435–42.PubMedPubMedCentralGoogle Scholar
  102. 102.
    Tsutsui K, Ukena K, Sakamoto H, Okuyama S, Haraguchi S. Biosynthesis, mode of action, and functional significance of neurosteroids in the Purkinje cell. Front Endocrinol. 2011;2:61.Google Scholar
  103. 103.
    Chen S, Hillman DE. Marked reorganization of Purkinje cell dendrites and spines in adult rat following vacating of synapses due to deafferentation. Brain Res. 1982;245:131–5.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Shimada A, Mason CA, Morrison ME. TrkB signaling modulates spine density and morphology independent of dendrite structure in cultured neonatal Purkinje cells. J Neurosci. 1998;18:8559–70.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Ohira K, Funatsu N, Nakamura S, Hayashi M. Expression of BDNF and TrkB receptor subtypes in the postnatal developing Purkinje cells of monkey cerebellum. Gene Expr Patterns. 2004;4:257–61.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Lei L, Parada LF. Transcriptional regulation of Trk family neurotrophin receptors. Cell Mol Life Sci. 2007;64:522–32.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Rossi F, Wiklund L, van der Want JJ, Strata P. Reinnervation of cerebellar Purkinje cells by climbing fibres surviving a subtotal lesion of the inferior olive in the adult rat. I. Development of new collateral branches and terminal plexuses. J Comp Neurol. 1991;308:513–35.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Dhar M, Brenner JM, Sakimura K, Kano M, Nishiyama H. Spatiotemporal dynamics of lesion-induced axonal sprouting and its relation to functional architecture of the cerebellum. Nat Commun. 2016;7:12938.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Dixon KJ, Sherrard RM. Brain-derived neurotrophic factor induces post-lesion transcommissural growth of olivary axons that develop normal climbing fibers on mature Purkinje cells. Exp Neurol. 2006;202:44–56.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Sherrard RM, Bower AJ. IGF-1 induces neonatal climbing-fibre plasticity in the mature rat cerebellum. Neuroreport. 2003;14:1713–6.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Willson ML, McElnea C, Mariani J, Lohof AM, Sherrard RM. BDNF increases homotypic olivocerebellar reinnervation and associated fine motor and cognitive skill. Brain. 2008;131:1099–112.PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Sherrard RM, Dixon KJ, Bakouche J, Rodger J, Lemaigre-Dubreuil Y, Mariani J. Differential expression of TrkB isoforms switches climbing fiber-Purkinje cell synaptogenesis to selective synapse elimination. Dev Neurobiol. 2009;69:647–62.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Letellier M, Bailly Y, Demais V, Sherrard RM, Mariani J, Lohof AM. Reinnervation of late postnatal Purkinje cells by climbing fibers: neosynaptogenesis without transient multi-innervation. J Neurosci. 2007;27:5373–83.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Ribar TJ, Rodriguiz RM, Khiroug L, Wetsel WC, Augustine GJ, Means AR. Cerebellar defects in Ca2+/calmodulin kinase IV-deficient mice. J Neurosci. 2000;20:Rc107.PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Bosman LW, Hartmann J, Barski JJ, Lepier A, Noll-Hussong M, Reichardt LF, et al. Requirement of TrkB for synapse elimination in developing cerebellar Purkinje cells. Brain Cell Biol. 2006;35:87–101.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Choo M, Miyazaki T, Yamazaki M, Kawamura M, Nakazawa T, Zhang J, et al. Retrograde BDNF to TrkB signaling promotes synapse elimination in the developing cerebellum. Nat Commun. 2017;8:195.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Lindvall O. Treatment of Parkinson’s disease using cell transplantation. Philos Trans R Soc Lond Ser B Biol Sci. 2015;370:20140370.CrossRefGoogle Scholar
  118. 118.
    Kordower JH, Freeman TB, Snow BJ, Vingerhoets FJ, Mufson EJ, Sanberg PR, et al. Neuropathological evidence of graft survival and striatal reinnervation after the transplantation of fetal mesencephalic tissue in a patient with Parkinson’s disease. N Engl J Med. 1995;332:1118–24.PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Rylander Ottosson D, Lane E. Striatal plasticity in L-DOPA- and graft-induced dyskinesia; the common link? Front Cell Neurosci. 2016;10:16.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Piccini P, Lindvall O, Bjorklund A, Brundin P, Hagell P, Ceravolo R, et al. Delayed recovery of movement-related cortical function in Parkinson’s disease after striatal dopaminergic grafts. Ann Neurol. 2000;48:689–95.PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Freed CR, Greene PE, Breeze RE, Tsai WY, DuMouchel W, Kao R, et al. Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. N Engl J Med. 2001;344:710–9.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Olanow CW, Goetz CG, Kordower JH, Stoessl AJ, Sossi V, Brin MF, et al. A double-blind controlled trial of bilateral fetal nigral transplantation in Parkinson’s disease. Ann Neurol. 2003;54:403–14.PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Piccini P, Pavese N, Hagell P, Reimer J, Bjorklund A, Oertel WH, et al. Factors affecting the clinical outcome after neural transplantation in Parkinson’s disease. Brain. 2005;128:2977–86.PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Roy NS, Cleren C, Singh SK, Yang L, Beal MF, Goldman SA. Functional engraftment of human ES cell-derived dopaminergic neurons enriched by coculture with telomerase-immortalized midbrain astrocytes. Nat Med. 2006;12:1259–68.PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Bjorklund LM, Sanchez-Pernaute R, Chung S, Andersson T, Chen IY, McNaught KS, et al. Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model. Proc Natl Acad Sci U S A. 2002;99:2344–9.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Fukuda H, Takahashi J, Watanabe K, Hayashi H, Morizane A, Koyanagi M, et al. Fluorescence-activated cell sorting-based purification of embryonic stem cell-derived neural precursors averts tumor formation after transplantation. Stem Cells. 2006;24:763–71.PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Bieberich E, Silva J, Wang G, Krishnamurthy K, Condie BG. Selective apoptosis of pluripotent mouse and human stem cells by novel ceramide analogues prevents teratoma formation and enriches for neural precursors in ES cell-derived neural transplants. J Cell Biol. 2004;167:723–34.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Parish CL, Parisi S, Persico MG, Arenas E, Minchiotti G. Cripto as a target for improving embryonic stem cell-based therapy in Parkinson’s disease. Stem Cells. 2005;23:471–6.PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    Xiao B, Ng HH, Takahashi R, Tan EK. Induced pluripotent stem cells in Parkinson’s disease: scientific and clinical challenges. J Neurol Neurosurg Psychiatry. 2016;87:697–702.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Krystkowiak P, Gaura V, Labalette M, Rialland A, Remy P, Peschanski M, et al. Alloimmunisation to donor antigens and immune rejection following foetal neural grafts to the brain in patients with Huntington’s disease. PLoS One. 2007;2:e166.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Morizane A, Li JY, Brundin P. From bench to bed: the potential of stem cells for the treatment of Parkinson’s disease. Cell Tissue Res. 2008;331:323–36.PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Ma Y, Feigin A, Dhawan V, Fukuda M, Shi Q, Greene P, et al. Dyskinesia after fetal cell transplantation for parkinsonism: a PET study. Ann Neurol. 2002;52:628–34.PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Kordower JH, Chu Y, Hauser RA, Freeman TB, Olanow CW. Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson’s disease. Nat Med. 2008a;14:504–6.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Kordower JH, Chu Y, Hauser RA, Olanow CW, Freeman TB. Transplanted dopaminergic neurons develop PD pathologic changes: a second case report. Mov Disord. 2008b;23:2303–6.PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Cendelin J, Mitoma H. Neurotransplantation therapy. Handb Clin Neurol. 2018;155:379–91.PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Chen X, Tang TS, Tu H, Nelson O, Pook M, Hammer R, et al. Deranged calcium signaling and neurodegeneration in spinocerebellar ataxia type 3. J Neurosci. 2008;28:12713–24.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Boy J, Schmidt T, Wolburg H, Mack A, Nuber S, Bottcher M, et al. Reversibility of symptoms in a conditional mouse model of spinocerebellar ataxia type 3. Hum Mol Genet. 2009;18:4282–95.PubMedCrossRefPubMedCentralGoogle Scholar
  138. 138.
    Liu J, Tang TS, Tu H, Nelson O, Herndon E, Huynh DP, et al. Deranged calcium signaling and neurodegeneration in spinocerebellar ataxia type 2. J Neurosci. 2009;29:9148–62.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Furrer SA, Waldherr SM, Mohanachandran MS, Baughn TD, Nguyen KT, Sopher BL, et al. Reduction of mutant ataxin-7 expression restores motor function and prevents cerebellar synaptic reorganization in a conditional mouse model of SCA7. Hum Mol Genet. 2013;22:890–903.PubMedCrossRefPubMedCentralGoogle Scholar
  140. 140.
    Chort A, Alves S, Marinello M, Dufresnois B, Dornbierer JG, Tesson C, et al. Interferon beta induces clearance of mutant ataxin 7 and improves locomotion in SCA7 knock-in mice. Brain. 2013;136:1732–45.PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Nobrega C, Nascimento-Ferreira I, Onofre I, Albuquerque D, Hirai H, Deglon N, et al. Silencing mutant ataxin-3 rescues motor deficits and neuropathology in Machado-Joseph disease transgenic mice. PLoS One. 2013;8:e52396.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Rodriguez-Lebron E, Costa Mdo C, Luna-Cancalon K, Peron TM, Fischer S, Boudreau RL, et al. Silencing mutant ATXN3 expression resolves molecular phenotypes in SCA3 transgenic mice. Mol Ther. 2013;21:1909–18.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Wang HL, Hu SH, Chou AH, Wang SS, Weng YH, Yeh TH. H1152 promotes the degradation of polyglutamine-expanded ataxin-3 or ataxin-7 independently of its ROCK-inhibiting effect and ameliorates mutant ataxin-3-induced neurodegeneration in the SCA3 transgenic mouse. Neuropharmacology. 2013;70:1–11.PubMedCrossRefPubMedCentralGoogle Scholar
  144. 144.
    Ramachandran PS, Bhattarai S, Singh P, Boudreau RL, Thompson S, Laspada AR, et al. RNA interference-based therapy for spinocerebellar ataxia type 7 retinal degeneration. PLoS One. 2014;9:e95362.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Ilg W, Bastian AJ, Boesch S, Burciu RG, Celnik P, Claassen J, et al. Consensus paper: management of degenerative cerebellar disorders. Cerebellum. 2014;13:248–68.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Ferrucci R, Bocci T, Cortese F, Ruggiero F, Priori A. Noninvasive cerebellar stimulation as a complement tool to pharmacotherapy. Curr Neuropharmacol 2017.
  147. 147.
    Benussi A, Koch G, Cotelli M, Padovani A, Borroni B. Cerebellar transcranial direct current stimulation in patients with ataxia: a double-blind, randomized, sham-controlled study. Mov Disord. 2015;30:1701–5.PubMedCrossRefPubMedCentralGoogle Scholar
  148. 148.
    Benussi A, Dell’Era V, Cotelli MS, Turla M, Casali C, Padovani A, et al. Long term clinical and neurophysiological effects of cerebellar transcranial direct current stimulation in patients with neurodegenerative ataxia. Brain Stimul. 2017;10:242–50.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Jan Cendelin
    • 1
    • 2
  • Annalisa Buffo
    • 3
    • 4
  • Hirokazu Hirai
    • 5
  • Lorenzo Magrassi
    • 6
    • 7
  • Hiroshi Mitoma
    • 8
  • Rachel Sherrard
    • 9
  • Frantisek Vozeh
    • 1
    • 2
  • Mario Manto
    • 10
    • 11
    Email author
  1. 1.Department of Pathophysiology, Faculty of Medicine in PilsenCharles UniversityPlzenCzech Republic
  2. 2.Laboratory of Neurodegenerative Disorders, Biomedical Center, Faculty of Medicine in PilsenCharles UniversityPlzenCzech Republic
  3. 3.Department of Neuroscience Rita Levi-MontalciniUniversity of TurinTurinItaly
  4. 4.Neuroscience Institute Cavalieri OttolenghiTurinItaly
  5. 5.Department of Neurophysiology and Neural RepairGunma University Graduate School of MedicineMaebashiJapan
  6. 6.Neurosurgery, Dipartimento di Scienze Clinico-Chirurgiche Diagnostiche e Pediatriche, Fondazione IRCCS Policlinico S. MatteoUniversità degli Studi di PaviaPaviaItaly
  7. 7.Istituto di Genetica Molecolare – CNRPaviaItaly
  8. 8.Medical Education Promotion CenterTokyo Medical UniversityTokyoJapan
  9. 9.IBPS, UMR8256 Biological Adaptation and AgeingSorbonne Université and CNRSParisFrance
  10. 10.Department of NeurologyCHU-CharleroiCharleroiBelgium
  11. 11.Service des NeurosciencesUniversité de MonsMonsBelgium

Personalised recommendations