Advertisement

Past and Present of Eye Movement Abnormalities in Ataxia-Telangiectasia

  • Sherry Y. Tang
  • Aasef G. Shaikh
Review
  • 16 Downloads

Abstract

Ataxia-telangiectasia is the second most common autosomal recessive hereditary ataxia, with an estimated incidence of 1 in 100,000 births. Besides ataxia and ocular telangiectasias, eye movement abnormalities have long been associated with this disorder and is frequently present in almost all patients. A handful of studies have described the phenomenology of ocular motor deficits in ataxia-telangiectasia. Contemporary literature linked their physiology to cerebellar dysfunction and secondary abnormalities at the level of brainstem. These studies, while providing a proof of concept of ocular motor physiology in disease, i.e., ataxia-telangiectasia, also advanced our understanding of how the cerebellum works. Here, we will summarize the clinical abnormalities seen with ataxia-telangiectasia in each subtype of eye movements and subsequently describe the underlying pathophysiology. Finally, we will review how these deficits are linked to abnormal cerebellar function and how it allows better understanding of the cerebellar physiology.

Keywords

Ataxia Eye movement Vestibular Saccade Pursuit Gaze holding 

Notes

Funding

This work was supported by the Dystonia Coalition Career Development Award (AS), Dystonia Medical Research Foundation Research Grant (AS), and the American Academy of Neurology Career Development Award (AS).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no competing interests.

References

  1. 1.
    Swift M, Morrell D, Cromartie E, Chamberlin AR, Skolnick MH, Bishop DT. The incidence and gene frequency of ataxia-telangiectasia A-T in the United States. Am J Hum Genet. 1986;39(5):573–83.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Jayadev S, Bird TD. Hereditary ataxias: overview. Genet Med. 2013;15(9):673–83.CrossRefPubMedGoogle Scholar
  3. 3.
    Boder E, Sedgwick RP. Ataxia-Telangiectasia A-T: a familial syndrome of progressive cerebellar ataxia, oculocutaneous telangiectasia and frequent pulmonary infection. Pediatrics. 1958;21(4):526–54.PubMedGoogle Scholar
  4. 4.
    McFarlin DE, Strober W, Waldmann TA. Ataxia-telangiectasia A-T. Medicine (Baltimore). 1972;51(4):281–314.CrossRefGoogle Scholar
  5. 5.
    Biemond A. Paleo cerebellar atrophy with extrapyramidal manifestations in association with bronchiectasis and telangiectasia of the conjunctiva bulbi as a familial syndrome. Van Bogaert Radermecker J Eds Proc First Int Congr. 1957;206.Google Scholar
  6. 6.
    Savitsky K, Bar-Shira A, Gilad S, Rotman G, Ziv Y, Vanagaite L, et al. A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science. 1995;268(5218):1749–53.CrossRefPubMedGoogle Scholar
  7. 7.
    Byrd PJ, McConville CM, Cooper P, Parkhill J, Stankovic T, McGuire GM, et al. Mutations revealed by sequencing the 5′ half of the gene for ataxia telangiectasia. Hum Mol Genet. 1996;5(1):145–9.CrossRefPubMedGoogle Scholar
  8. 8.
    Moin M, Aghamohammadi A, Kouhi A, Tavassoli S, Rezaei N, Ghaffari S-R, et al. Ataxia-telangiectasia A-T in Iran: clinical and laboratory features of 104 patients. Pediatr Neurol. 2007;37(1):21–8.CrossRefPubMedGoogle Scholar
  9. 9.
    Smith JL, Cogan DG. Ataxia-Telangiectasia A-T. AMA Arch Ophthalmol. 1959;62(3):364–9.CrossRefGoogle Scholar
  10. 10.
    Cogan DG, Chu FC, Reingold D, Barranger J. Ocular motor signs in some metabolic diseases. Arch Ophthalmol. 1981;99(10):1802–8.CrossRefPubMedGoogle Scholar
  11. 11.
    Federighi P, Ramat S, Rosini F, Pretegiani E, Federico A, Rufa A. Characteristic eye movements in ataxia-telangiectasia-like disorder: an explanatory hypothesis. Front Neurol. 2017;8:596.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Hyams SW, Reisner SH, Neumann E. The eye signs in ataxia-telangiectasia A-T. Am J Ophthalmol. 62(6):1118–24.Google Scholar
  13. 13.
    Boder E, Sedgwick RP. Ataxia telangiectasia: a review of 150 cases. Intern Cong Ment Retard. 1964.Google Scholar
  14. 14.
    Lewis RF, Lederman HM, Crawford TO. Ocular motor abnormalities in ataxia telangiectasia. Ann Neurol. 1999;46(3):287–95.CrossRefPubMedGoogle Scholar
  15. 15.
    Baloh RW, Yee RD, Boder E. Eye movements in ataxia-telangiectasia. Neurology. 1978;28(11):1099–104.CrossRefPubMedGoogle Scholar
  16. 16.
    Harris CM, Shawkat F, Russell-Eggitt I, Wilson J, Taylor D. Intermittent horizontal saccade failure (‘ocular motor apraxia’) in children. Br J Ophthalmol. 1996;80(2):151–8.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Zee DS, Yee RD, Singer HS. Congenital ocular motor apraxia. Brain J Neurol. 1977;100(3):581–99.CrossRefGoogle Scholar
  18. 18.
    Reed H, Israels S. Congenital ocular motor apraxia: a form of horizontal gaze palsy. Br J Ophthalmol. 1956;40(7):444–8.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Riopel DA. Congenital ocular motor apraxia* *from the division of ophthalmology, College of Medicine, University of Florida. Am J Ophthalmol. 1963;55(3):511–4.CrossRefPubMedGoogle Scholar
  20. 20.
    ROBLES J. Congenital ocular motor apraxia in identical twins. Arch Ophthalmol. 1966;75(6):746–9.CrossRefPubMedGoogle Scholar
  21. 21.
    Orrison WW, Robertson WC. Congenital ocular motor apraxia: a possible disconnection syndrome. Arch Neurol. 1979;36(1):29–31.CrossRefPubMedGoogle Scholar
  22. 22.
    Leigh RJ, Zee DS. The neurology of eye movements: Oxford University Press; 2015. 1137 pGoogle Scholar
  23. 23.
    Van Gisbergen JA, Robinson DA, Gielen S. A quantitative analysis of generation of saccadic eye movements by burst neurons. J Neurophysiol. 1981;45(3):417–42.CrossRefPubMedGoogle Scholar
  24. 24.
    Hepp K, Henn V. Spatio-temporal recoding of rapid eye movement signals in the monkey paramedian pontine reticular formation (PPRF). Exp Brain Res. 1983;52(1):105–20.CrossRefPubMedGoogle Scholar
  25. 25.
    Henn V, Hepp K, Vilis T. Rapid eye movement generation in the primate. Physiology, pathophysiology, and clinical implications. Rev Neurol (Paris). 1989;145(8–9):540–5.Google Scholar
  26. 26.
    Ramat S, Leigh RJ, Zee DS, Optican LM. Ocular oscillations generated by coupling of brainstem excitatory and inhibitory saccadic burst neurons. Exp Brain Res. 2005;160(1):89–106.CrossRefPubMedGoogle Scholar
  27. 27.
    Shaikh AG, Marti S, Tarnutzer AA, Palla A, Crawford T, Straumann D, et al. Gaze fixation deficits and their implication in ataxia-telangiectasia A-T. J Neurol Neurosurg Psychiatry. 2009;80(8):858–64.CrossRefPubMedGoogle Scholar
  28. 28.
    Shook BL, Schlag-Rey M, Schlag J. Direct projection from the supplementary eye field to the nucleus raphe interpositus. Exp Brain Res. 1988;73(1):215–8.CrossRefPubMedGoogle Scholar
  29. 29.
    Stanton GB, Goldberg ME, Bruce CJ. Frontal eye field efferents in the macaque monkey: I. subcortical pathways and topography of striatal and thalamic terminal fields. J Comp Neurol. 1988;271(4):473–92.CrossRefPubMedGoogle Scholar
  30. 30.
    Noda H, Sugita S, Ikeda Y. Afferent and efferent connections of the oculomotor region of the fastigial nucleus in the macaque monkey. J Comp Neurol. 1990;302(2):330–48.CrossRefPubMedGoogle Scholar
  31. 31.
    Büttner-Ennever JA, Horn AK, Henn V, Cohen B. Projections from the superior colliculus motor map to omnipause neurons in monkey. J Comp Neurol. 1999;413(1):55–67.CrossRefPubMedGoogle Scholar
  32. 32.
    Gandhi NJ, Keller EL. Spatial distribution and discharge characteristics of superior colliculus neurons antidromically activated from the omnipause region in monkey. J Neurophysiol. 1997;78(4):2221–5.CrossRefPubMedGoogle Scholar
  33. 33.
    Gandhi NJ, Keller EL. Activity of the brain stem omnipause neurons during saccades perturbed by stimulation of the primate superior colliculus. J Neurophysiol. 1999;82(6):3254–67.CrossRefPubMedGoogle Scholar
  34. 34.
    Ohgaki T, Markham CH, Schneider JS, Curthoys IS. Anatomical evidence of the projection of pontine omnipause neurons to midbrain regions controlling vertical eye movements. J Comp Neurol. 1989;289(4):610–25.CrossRefPubMedGoogle Scholar
  35. 35.
    Keller EL, Edelman JA. Use of interrupted saccade paradigm to study spatial and temporal dynamics of saccadic burst cells in superior colliculus in monkey. J Neurophysiol. 1994;72(6):2754–70.CrossRefPubMedGoogle Scholar
  36. 36.
    Keller EL, Gandhi NJ, Shieh JM. Endpoint accuracy in saccades interrupted by stimulation in the omnipause region in monkey. Vis Neurosci. 1996;13(6):1059–67.CrossRefPubMedGoogle Scholar
  37. 37.
    Munoz DP, Waitzman DM, Wurtz RH. Activity of neurons in monkey superior colliculus during interrupted saccades. J Neurophysiol. 1996;75(6):2562–80.CrossRefPubMedGoogle Scholar
  38. 38.
    Schiller PH, True SD, Conway JL. Deficits in eye movements following frontal eye-field and superior colliculus ablations. J Neurophysiol. 1980;44(6):1175–89.CrossRefPubMedGoogle Scholar
  39. 39.
    Schiller PH, Chou IH. The effects of frontal eye field and dorsomedial frontal cortex lesions on visually guided eye movements. Nat Neurosci. 1998;1(3):248–53.CrossRefPubMedGoogle Scholar
  40. 40.
    Dias EC, Segraves MA. Muscimol-induced inactivation of monkey frontal eye field: effects on visually and memory-guided saccades. J Neurophysiol. 1999;81(5):2191–214.CrossRefPubMedGoogle Scholar
  41. 41.
    Hanes DP, Smith MK, Optican LM, Wurtz RH. Recovery of saccadic dysmetria following localized lesions in monkey superior colliculus. Exp Brain Res. 2005;160(3):312–25.CrossRefPubMedGoogle Scholar
  42. 42.
    Ohtsuka K, Noda H. Discharge properties of Purkinje cells in the oculomotor vermis during visually guided saccades in the macaque monkey. J Neurophysiol. 1995;74(5):1828–40.CrossRefPubMedGoogle Scholar
  43. 43.
    Optican LM, Robinson DA. Cerebellar-dependent adaptive control of primate saccadic system. J Neurophysiol. 1980;44(6):1058–76.CrossRefPubMedGoogle Scholar
  44. 44.
    Zee DS, Yamazaki A, Butler PH, Gücer G. Effects of ablation of flocculus and paraflocculus of eye movements in primate. J Neurophysiol. 1981;46(4):878–99.CrossRefPubMedGoogle Scholar
  45. 45.
    Ohtsuka K, Noda H. Saccadic burst neurons in the oculomotor region of the fastigial nucleus of macaque monkeys. J Neurophysiol. 1991;65(6):1422–34.CrossRefPubMedGoogle Scholar
  46. 46.
    Fuchs AF, Robinson FR, Straube A. Role of the caudal fastigial nucleus in saccade generation. I. Neuronal discharge pattern. J Neurophysiol. 1993;70(5):1723–40.CrossRefPubMedGoogle Scholar
  47. 47.
    Helmchen C, Straube A, Büttner U. Saccade-related activity in the fastigial oculomotor region of the macaque monkey during spontaneous eye movements in light and darkness. Exp Brain Res. 1994;98(3):474–82.CrossRefPubMedGoogle Scholar
  48. 48.
    Selhorst JB, Stark L, Ochs AL, Hoyt WF. Disorders in cerebellar ocular motor control. I. Saccadic overshoot dysmetria. An oculographic, control system and clinico-anatomical analysis. Brain J Neurol. 1976;99(3):497–508.CrossRefGoogle Scholar
  49. 49.
    Selhorst JB, Stark L, Ochs AL, Hoyt WF. Disorders in cerebellar ocular motor control. II. Macrosaccadic oscillation. An oculographic, control system and clinico-anatomical analysis. Brain J Neurol. 1976;99(3):509–22.CrossRefGoogle Scholar
  50. 50.
    Robinson FR, Straube A, Fuchs AF. Role of the caudal fastigial nucleus in saccade generation. II. Effects of muscimol inactivation. J Neurophysiol. 1993;70(5):1741–58.CrossRefPubMedGoogle Scholar
  51. 51.
    Livingstone M, Hubel D. Segregation of form, color, movement, and depth: anatomy, physiology, and perception. Science. 1988;240(4853):740–9.CrossRefPubMedGoogle Scholar
  52. 52.
    Glickstein M, Gerrits N, Kralj-Hans I, Mercier B, Stein J, Voogd J. Visual pontocerebellar projections in the macaque. J Comp Neurol. 1994;349(1):51–72.CrossRefPubMedGoogle Scholar
  53. 53.
    Van Essen DC, Gallant JL. Neural mechanisms of form and motion processing in the primate visual system. Neuron. 1994;13(1):1–10.CrossRefPubMedGoogle Scholar
  54. 54.
    Ilg UJ. Commentary: smooth pursuit eye movements: from low-level to high-level vision. Prog Brain Res. 2002;140:279–98.CrossRefPubMedGoogle Scholar
  55. 55.
    Werner JS, Chalupa LM, editors. The new visual neurosciences. 1st ed. Cambridge: The MIT Press; 2013. 1696 pGoogle Scholar
  56. 56.
    Derrington AM, Allen HA, Delicato LS. Visual mechanisms of motion analysis and motion perception. Annu Rev Psychol. 2004;55(1):181–205.CrossRefPubMedGoogle Scholar
  57. 57.
    Vaina LM, Soloviev S. First-order and second-order motion: neurological evidence for neuroanatomically distinct systems. Prog Brain Res. 2004;144:197–212.CrossRefPubMedGoogle Scholar
  58. 58.
    Chen KJ, Sheliga BM, Fitzgibbon EJ, Miles FA. Initial ocular following in humans depends critically on the fourier components of the motion stimulus. Ann N Y Acad Sci. 2005;1039:260–71.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Nagao S, Kitamura T, Nakamura N, Hiramatsu T, Yamada J. Differences of the primate flocculus and ventral paraflocculus in the mossy and climbing fiber input organization. J Comp Neurol. 1997;382(4):480–98.CrossRefPubMedGoogle Scholar
  60. 60.
    Rambold H, Churchland A, Selig Y, Jasmin L, Lisberger SG. Partial ablations of the Flocculus and ventral Paraflocculus in monkeys cause linked deficits in smooth pursuit eye movements and adaptive modification of the VOR. J Neurophysiol. 2002;87(2):912–24.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Heinen SJ, Keller EL. The function of the cerebellar uvula in monkey during optokinetic and pursuit eye movements: single-unit responses and lesion effects. Exp Brain Res. 1996;110(1):1–14.CrossRefPubMedGoogle Scholar
  62. 62.
    Kase M, Noda H, Suzuki DA, Miller DC. Target velocity signals of visual tracking in vermal Purkinje cells of the monkey. Science. 1979;205(4407):717–20.CrossRefPubMedGoogle Scholar
  63. 63.
    Suzuki DA, Noda H, Kase M. Visual and pursuit eye movement-related activity in posterior vermis of monkey cerebellum. J Neurophysiol. 1981;46(5):1120–39.CrossRefPubMedGoogle Scholar
  64. 64.
    Suzuki DA, Keller EL. The role of the posterior vermis of monkey cerebellum in smooth-pursuit eye movement control. II. Target velocity-related Purkinje cell activity. J Neurophysiol. 1988;59(1):19–40.CrossRefPubMedGoogle Scholar
  65. 65.
    Ohtsuka K, Enoki T. Transcranial magnetic stimulation over the posterior cerebellum during smooth pursuit eye movements in man. Brain J Neurol. 1998;121(Pt 3):429–35.CrossRefGoogle Scholar
  66. 66.
    Shinmei Y, Yamanobe T, Fukushima J, Fukushima K. Purkinje cells of the cerebellar dorsal vermis: simple-spike activity during pursuit and passive whole-body rotation. J Neurophysiol. 2002;87(4):1836–49.CrossRefPubMedGoogle Scholar
  67. 67.
    Fuchs AF, Robinson FR, Straube A. Participation of the caudal fastigial nucleus in smooth-pursuit eye movements. I. Neuronal activity. J Neurophysiol. 1994;72(6):2714–28.CrossRefPubMedGoogle Scholar
  68. 68.
    Vahedi K, Rivaud S, Amarenco P, Pierrot-Deseilligny C. Horizontal eye movement disorders after posterior vermis infarctions. J Neurol Neurosurg Psychiatry. 1995;58(1):91–4.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Laurens J, Angelaki DE. The functional significance of velocity storage and its dependence on gravity. Exp Brain Res. 2011;210(3–4):407–22.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Zee DS, Leigh RJ, Mathieu-Millaire F. Cerebellar control of ocular gaze stability. Ann Neurol. 1980;7(1):37–40.CrossRefPubMedGoogle Scholar
  71. 71.
    Leigh RJ, Robinson DA, Zee DS. A hypothetical explanation for periodic alternating nystagmus: instability in the optokinetic-vestibular system. Ann N Y Acad Sci. 1981;374:619–35.CrossRefPubMedGoogle Scholar
  72. 72.
    Stell R, Bronstein AM, Plant GT, Harding AE. Ataxia telangiectasia: a reappraisal of the ocular motor features and their value in the diagnosis of atypical cases. Mov Disord Off J Mov Disord Soc. 1989;4(4):320–9.CrossRefGoogle Scholar
  73. 73.
    Shaikh AG, Marti S, Tarnutzer AA, Palla A, Crawford TO, Straumann D, et al. Ataxia telangiectasia: a “disease model” to understand the cerebellar control of vestibular reflexes. J Neurophysiol. 2011;105(6):3034–41.CrossRefPubMedGoogle Scholar
  74. 74.
    Waespe W, Cohen B, Raphan T. Dynamic modification of the vestibulo-ocular reflex by the nodulus and uvula. Science. 1985;228(4696):199–202.CrossRefPubMedGoogle Scholar
  75. 75.
    Ito M. Neurophysiological aspects of the cerebellar motor control system. Int J Neurol. 1970;7(2):162–76.PubMedGoogle Scholar
  76. 76.
    Schultheis LW, Robinson DA. Directional plasticity of the vestibuloocular reflex in the cat. Ann N Y Acad Sci. 1981;374:504–12.CrossRefPubMedGoogle Scholar
  77. 77.
    Walker MF, Zee DS. Cerebellar disease alters the axis of the high-acceleration vestibuloocular reflex. J Neurophysiol. 2005;94(5):3417–29.CrossRefPubMedGoogle Scholar
  78. 78.
    Walker MF, Zee DS. Directional abnormalities of vestibular and optokinetic responses in cerebellar disease. Ann N Y Acad Sci. 1999;871:205–20.CrossRefPubMedGoogle Scholar
  79. 79.
    Lisberger SG. The latency of pathways containing the site of motor learning in the monkey vestibulo-ocular reflex. Science. 1984;225(4657):74–6.CrossRefPubMedGoogle Scholar
  80. 80.
    Fernandez C, Goldberg JM, Abend WK. Response to static tilts of peripheral neurons innervating otolith organs of the squirrel monkey. J Neurophysiol. 1972;35(6):978–87.CrossRefPubMedGoogle Scholar
  81. 81.
    Angelaki DE, Shaikh AG, Green AM, Dickman JD. Neurons compute internal models of the physical laws of motion. Nature. 2004;430(6999):560–4.CrossRefPubMedGoogle Scholar
  82. 82.
    Shaikh AG, Ghasia FF, Dickman JD, Angelaki DE. Properties of cerebellar fastigial neurons during translation, rotation, and eye movements. J Neurophysiol. 2005;93(2):853–63.CrossRefPubMedGoogle Scholar
  83. 83.
    Shaikh AG, Green AM, Ghasia FF, Newlands SD, Dickman JD, Angelaki DE. Sensory convergence solves a motion ambiguity problem. Curr Biol CB. 2005;15(18):1657–62.CrossRefPubMedGoogle Scholar
  84. 84.
    Yakusheva TA, Shaikh AG, Green AM, Blazquez PM, Dickman JD, Angelaki DE. Purkinje cells in posterior cerebellar vermis encode motion in an inertial reference frame. Neuron. 2007;54(6):973–85.CrossRefPubMedGoogle Scholar
  85. 85.
    Angelaki DE, Hess BJ. Inertial representation of angular motion in the vestibular system of rhesus monkeys. II. Otolith-controlled transformation that depends on an intact cerebellar nodulus. J Neurophysiol. 1995;73(5):1729–51.CrossRefPubMedGoogle Scholar
  86. 86.
    Sheliga BM, Yakushin SB, Silvers A, Raphan T, Cohen B. Control of spatial orientation of the angular vestibulo-ocular reflex by the nodulus and uvula of the vestibulocerebellum. Ann N Y Acad Sci. 1999;871(1):94–122.CrossRefPubMedGoogle Scholar
  87. 87.
    Robinson DA. Adaptive gain control of vestibuloocular reflex by the cerebellum. J Neurophysiol. 1976;39(5):954–69.CrossRefPubMedGoogle Scholar
  88. 88.
    Wearne S, Raphan T, Cohen B. Effects of tilt of the gravito-inertial acceleration vector on the angular vestibuloocular reflex during centrifugation. J Neurophysiol. 1999;81(5):2175–90.CrossRefPubMedGoogle Scholar
  89. 89.
    Robinson DA. The use of matrices in analyzing the three-dimensional behavior of the vestibulo-ocular reflex. Biol Cybern. 1982;46(1):53–66.CrossRefPubMedGoogle Scholar
  90. 90.
    Raphan T, Matsuo V, Cohen B. Velocity storage in the vestibulo-ocular reflex arc (VOR). Exp Brain Res. 1979;35(2):229–48.CrossRefPubMedGoogle Scholar
  91. 91.
    Ramat S, Leigh RJ, Zee DS, Optican LM. What clinical disorders tell us about the neural control of saccadic eye movements. Brain J Neurol. 2007;130(Pt 1):10–35.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Neurology, Neurology Service, Cleveland VA Medical CenterCase Western Reserve UniversityClevelandUSA

Personalised recommendations