Advertisement

The Cerebellum

, Volume 18, Issue 2, pp 166–177 | Cite as

Extinction and Renewal of Conditioned Eyeblink Responses in Focal Cerebellar Disease

  • Katharina M. SteinerEmail author
  • Yvonne Gisbertz
  • Dae-In Chang
  • Björn Koch
  • Ellen Uslar
  • Jens Claassen
  • Elke Wondzinski
  • Thomas M. Ernst
  • Sophia L. Göricke
  • Mario Siebler
  • Dagmar Timmann
Original Paper
  • 103 Downloads

Abstract

Extinction of conditioned aversive responses (CR) has been shown to be context-dependent. The hippocampus and prefrontal cortex are of particular importance. The cerebellum may contribute to context-related processes because of its known connections with the hippocampus and prefrontal cortex. Context dependency of extinction can be demonstrated by the renewal effect. When CR acquisition takes place in context A and is extinguished in context B, renewal refers to the recovery of the CR in context A (A-B-A paradigm). In the present study acquisition, extinction and renewal of classically conditioned eyeblink responses were tested in 18 patients with subacute focal cerebellar lesions and 18 age- and sex-matched healthy controls. Standard delay eyeblink conditioning was performed using an A-B-A paradigm. All cerebellar patients underwent a high-resolution T1-weighted brain MRI scan to perform lesion-symptom mapping. CR acquisition was not significantly different between cerebellar and control participants allowing to draw conclusions on extinction. CR extinction was significantly less in cerebellar patients. Reduction of CR extinction tended to be more likely in patients with lesions in the lateral parts of lobule VI and Crus I. A significant renewal effect was present in controls only. The present data provide further evidence that the cerebellum contributes to extinction of conditioned eyeblink responses. Because acquisition was preserved and extinction took place in another context than acquisition, more lateral parts of the cerebellar hemisphere may contribute to context-related processes. Furthermore, lack of renewal in cerebellar patients suggest a contribution of the cerebellum to context-related processes.

Keywords

Cerebellum Eyeblink conditioning Extinction Renewal Lesion-symptom mapping 

Notes

Funding Information

This work was funded by German Research Foundation (DFG) grant SFB 1280 (A05) to DT.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.

References

  1. 1.
    Gerwig M, Kolb FP, Timmann D. The involvement of the human cerebellum in eyeblink conditioning. Cerebellum. 2007;6(1):38–57.Google Scholar
  2. 2.
    Timmann D, Drepper J, Frings M, Maschke M, Richter S, Gerwig M, et al. The human cerebellum contributes to motor, emotional and cognitive associative learning. A review. Cortex. 2010;46(7):845–57.Google Scholar
  3. 3.
    Daum I, Schugens MM, Ackermann H, Lutzenberger W, Dichgans J, Birbaumer N. Classical conditioning after cerebellar lesions in humans. Behav Neurosci. 1993;107(5):748–56.Google Scholar
  4. 4.
    Woodruff-Pak DS. Classical conditioning. Int Rev Neurobiol. 1997;41:341–66.Google Scholar
  5. 5.
    Topka H, Valls-Sole J, Massaquoi SG, Hallett M. Deficit in classical conditioning in patients with cerebellar degeneration. Brain. 1993;116:961–9.Google Scholar
  6. 6.
    Lange I, Kasanova Z, Goossens L, Leibold N, De Zeeuw CI, van Amelsvoort T, et al. The anatomy of fear learning in the cerebellum: a systematic meta-analysis. Neurosci Biobehav Rev. 2015;59:83–91.Google Scholar
  7. 7.
    Bracha V, Zhao L, Irwin KB, Bloedel JR. The human cerebellum and associative learning: dissociation between the acquisition, retention and extinction of conditioned eyeblinks. Brain Res. 2000;860(1–2):87–94.Google Scholar
  8. 8.
    McCormick DA, Thompson RF. Cerebellum: essential involvement in the classically conditioned eyelid response. Science. 1984;223(4633):296–9.Google Scholar
  9. 9.
    Mauk MD, Li W, Khilkevich A, Halverson H. Cerebellar mechanisms of learning and plasticity revealed by delay eyelid conditioning. Int Rev Neurobiol. 2014;117:21–37.Google Scholar
  10. 10.
    Strata P, Scelfo B, Sacchetti B. Involvement of cerebellum in emotional behavior. Physiol Res. 2011;60(Suppl 1):S39–48.Google Scholar
  11. 11.
    Strata P. The emotional cerebellum. Cerebellum. 2015;14(5):570–7.Google Scholar
  12. 12.
    Christian KM, Thompson RF. Long-term storage of an associative memory trace in the cerebellum. Behav Neurosci. 2005;119(2):526–37.Google Scholar
  13. 13.
    Gerwig M, Hajjar K, Dimitrova A, Maschke M, Kolb FP, Frings M, et al. Timing of conditioned eyeblink responses is impaired in cerebellar patients. J Neurosci. 2005;25(15):3919–31.Google Scholar
  14. 14.
    Yeo CH, Hardiman MJ, Glickstein M. Classical conditioning of the nictitating membrane response of the rabbit. III. Connections of cerebellar lobule HVI. Exp Brain Res. 1985;60(1):114–26.Google Scholar
  15. 15.
    Giustino TF, Maren S. The role of the medial prefrontal cortex in the conditioning and extinction of fear. Front Behav Neurosci. 2015;9:298.Google Scholar
  16. 16.
    Craske MG, Hermans D, Vervliet B. State-of-the-art and future directions for extinction as a translational model for fear and anxiety. Philos Trans R Soc Lond Ser B Biol Sci. 2018;373(1742):20170025.Google Scholar
  17. 17.
    Harvie DS, Moseley GL, Hillier SL, Meulders A. Classical conditioning differences associated with chronic pain: a systematic review. J Pain. 2017;18(8):889–98.Google Scholar
  18. 18.
    den Hollander M, de Jong JR, Volders S, Goossens ME, Smeets RJ, Vlaeyen JW. Fear reduction in patients with chronic pain: a learning theory perspective. Expert Rev Neurother. 2010;10(11):1733–45.Google Scholar
  19. 19.
    Bouton ME. Context and behavioral processes in extinction. Learn Mem. 2004;11(5):485–94.Google Scholar
  20. 20.
    Alvarez RP, Johnson L, Grillon C. Contextual-specificity of short-delay extinction in humans: renewal of fear-potentiated startle in a virtual environment. Learn Mem. 2007;14(4):247–53.Google Scholar
  21. 21.
    Grillon C, Alvarez RP, Johnson L, Chavis C. Contextual specificity of extinction of delay but not trace eyeblink conditioning in humans. Learn Mem. 2008;15(6):387–9.Google Scholar
  22. 22.
    Chang DI, Lissek S, Ernst TM, Thürling M, Uengoer M, Tegenthoff M, et al. Cerebellar contribution to context processing in extinction learning and recall. Cerebellum. 2015;14(6):670–6.Google Scholar
  23. 23.
    Milad MR, Quirk GJ. Fear extinction as a model for translational neuroscience: ten years of progress. Annu Rev Psychol. 2012;63:129–51.Google Scholar
  24. 24.
    Orsini CA, Maren S. Neural and cellular mechanisms of fear and extinction memory formation. Neurosci Biobehav Rev. 2012;36(7):1773–802.Google Scholar
  25. 25.
    Milad MR, Wright CI, Orr SP, Pitman RK, Quirk GJ, Rauch SL. Recall of fear extinction in humans activates the ventromedial prefrontal cortex and hippocampus in concert. Biol Psychiatry. 2007;62(5):446–54.Google Scholar
  26. 26.
    Lai CS, Franke TF, Gan WB. Opposite effects of fear conditioning and extinction on dendritic spine remodelling. Nature. 2012;483(7387):87–91.Google Scholar
  27. 27.
    Medina JF, Repa JC, Mauk MD, LeDoux JE. Parallels between cerebellum- and amygdala-dependent conditioning. Nat Rev Neurosci. 2002;3(2):122–31.Google Scholar
  28. 28.
    Jirenhed DA, Bengtsson F, Hesslow G. Acquisition, extinction, and reacquisition of a cerebellar cortical memory trace. J Neurosci. 2007;27(10):2493–502.Google Scholar
  29. 29.
    Medina JF, Nores WL, Mauk MD. Inhibition of climbing fibres is a signal for the extinction of conditioned eyelid responses. Nature. 2002;416(6878):330–3.Google Scholar
  30. 30.
    Bengtsson F, Jirenhed DA, Svensson P, Hesslow G. Extinction of conditioned blink responses by cerebello-olivary pathway stimulation. Neuroreport. 2007;18(14):1479–82.Google Scholar
  31. 31.
    Ernst TM, Thürling M, Müller S, Kahl F, Maderwald S, Schlamann M, et al. Modulation of 7 T fMRI signal in the cerebellar cortex and nuclei during acquisition, extinction, and reacquisition of conditioned eyeblink responses. Hum Brain Mapp. 2017;38(8):3957–74.Google Scholar
  32. 32.
    Robleto K, Poulos AM, Thompson RF. Brain mechanisms of extinction of the classically conditioned eyeblink response. Learn Mem. 2004;11(5):517–24.Google Scholar
  33. 33.
    Hu C, Zhang LB, Chen H, Xiong Y, Hu B. Neurosubstrates and mechanisms underlying the extinction of associative motor memory. Neurobiol Learn Mem. 2015;126:78–86.Google Scholar
  34. 34.
    Weible AP, McEchron MD, Disterhoft JF. Cortical involvement in acquisition and extinction of trace eyeblink conditioning. Behav Neurosci. 2000;114(6):1058–67.Google Scholar
  35. 35.
    Kalmbach BE, Mauk MD. Multiple sites of extinction for a single learned response. J Neurophysiol. 2012;107(1):226–38.Google Scholar
  36. 36.
    Wang YJ, Chen H, Hu C, Ke XF, Yang L, Xiong Y, et al. Baseline theta activities in medial prefrontal cortex and deep cerebellar nuclei are associated with the extinction of trace conditioned eyeblink responses in guinea pigs. Behav Brain Res. 2014;275:72–83.Google Scholar
  37. 37.
    Molchan SE, Sunderland T, McIntosh AR, Herscovitch P, Schreurs BG. A functional anatomical study of associative learning in humans. Proc Natl Acad Sci U S A. 1994;91(17):8122–6.Google Scholar
  38. 38.
    Parker KL, Andreasen NC, Liu D, Freeman JH, Ponto LL, O'Leary DS. Eyeblink conditioning in healthy adults: a positron emission tomography study. Cerebellum. 2012;11(4):946–56.Google Scholar
  39. 39.
    McCormick DA, Thompson RF. Locus coeruleus lesions and resistance to extinction of a classically conditioned response: involvement of the neocortex and hippocampus. Brain Res. 1982;245(2):239–49.Google Scholar
  40. 40.
    Strick PL, Dum RP, Fiez JA. Cerebellum and nonmotor function. Annu Rev Neurosci. 2009;32:413–34.Google Scholar
  41. 41.
    Liu W, Zhang Y, Yuan W, Wang J, Li S. A direct hippocampo-cerebellar projection in chicken. Anat Rec. 2012;295(8):1311–20.Google Scholar
  42. 42.
    Blatt GJ, Oblak AL, Schmahmann JD. Cerebellar connections with limbic circuits: anatomy and functional implications. In: Manto M, Schmahmann JD, Rossi F, Gruol DL, Koibuchi N, editors. Handbook of the cerebellum and cerebellar disorders. Dordrecht: Springer Netherlands; 2013. p. 479–96.Google Scholar
  43. 43.
    Schmahmann JD, Pandya DN. Anatomic organization of the basilar pontine projections from prefrontal cortices in rhesus monkey. J Neurosci. 1997;17(1):438–58.Google Scholar
  44. 44.
    Krienen FM, Buckner RL. Segregated fronto-cerebellar circuits revealed by intrinsic functional connectivity. Cereb Cortex. 2009;19(10):2485–97.Google Scholar
  45. 45.
    Kinner VL, Merz CJ, Lissek S, Wolf OT. Cortisol disrupts the neural correlates of extinction recall. NeuroImage. 2016;133:233–43.Google Scholar
  46. 46.
    Milad MR, Pitman RK, Ellis CB, Gold AL, Shin LM, Lasko NB, et al. Neurobiological basis of failure to recall extinction memory in posttraumatic stress disorder. Biol Psychiatry. 2009;66(12):1075–82.Google Scholar
  47. 47.
    Magal A, Mintz M. Inhibition of the amygdala central nucleus by stimulation of cerebellar output in rats: a putative mechanism for extinction of the conditioned fear response. Eur J Neurosci. 2014;40(10):3548–55.Google Scholar
  48. 48.
    Trouillas P, Takayanagi T, Hallett M, Currier RD, Subramony SH, Wessel K, et al. International Cooperative Ataxia Rating Scale for pharmacological assessment of the cerebellar syndrome. J Neurol Sci. 1997;145(2):205–11.Google Scholar
  49. 49.
    Schmitz-Hübsch T, du Montcel ST, Baliko L, Berciano J, Boesch S, Depondt C, et al. Scale for the assessment and rating of ataxia: development of a new clinical scale. Neurology. 2006;66(11):1717–20.Google Scholar
  50. 50.
    Jacobi H, Rakowicz M, Rola R, Fancellu R, Mariotti C, Charles P, et al. Inventory of Non-Ataxia Signs (INAS): validation of a new clinical assessment instrument. Cerebellum. 2013;12(3):418–28.Google Scholar
  51. 51.
    Gerwig M, Dimitrova A, Kolb FP, Maschke M, Brol B, Kunnel A, et al. Comparison of eyeblink conditioning in patients with superior and posterior inferior cerebellar lesions. Brain. 2003;126(Pt 1):71–94.Google Scholar
  52. 52.
    Ernst TM, Beyer L, Mueller OM, Göricke S, Ladd ME, Gerwig M, et al. Pronounced reduction of acquisition of conditioned eyeblink responses in young adults with focal cerebellar lesions impedes conclusions on the role of the cerebellum in extinction and savings. Neuropsychologia. 2016;85:287–300.Google Scholar
  53. 53.
    Gerwig M, Guberina H, Esser AC, Siebler M, Schoch B, Frings M, et al. Evaluation of multiple-session delay eyeblink conditioning comparing patients with focal cerebellar lesions and cerebellar degeneration. Behav Brain Res. 2010;212(2):143–51.Google Scholar
  54. 54.
    Woodruff-Pak DS, Papka M, Ivry RB. Cerebellar involvement in eyeblink classical conditioning in humans. Neuropsychology. 1996;10(4):443–58.Google Scholar
  55. 55.
    Bracha V, Zhao L, Wunderlich DA, Morrissy SJ, Bloedel JR. Patients with cerebellar lesions cannot acquire but are able to retain conditioned eyeblink reflexes. Brain. 1997;120:1401–13.Google Scholar
  56. 56.
    Greenhouse SW, Geisser S. On methods in the analysis of profile data. Psychometrika. 1959;24(2):95–112.Google Scholar
  57. 57.
    Diedrichsen J. A spatially unbiased atlas template of the human cerebellum. NeuroImage. 2006;33(1):127–38.Google Scholar
  58. 58.
    Karnath HO, Himmelbach M, Rorden C. The subcortical anatomy of human spatial neglect: putamen, caudate nucleus and pulvinar. Brain. 2002;125(Pt 2):350–60.Google Scholar
  59. 59.
    Rorden C, Karnath HO. Using human brain lesions to infer function: a relic from a past era in the fMRI age? Nat Rev Neurosci. 2004;5(10):813–9.Google Scholar
  60. 60.
    Rorden C, Karnath HO, Bonilha L. Improving lesion-symptom mapping. J Cogn Neurosci. 2007;19(7):1081–8.Google Scholar
  61. 61.
    Schmahmann JD, Doyon J, McDonald D, Holmes C, Lavoie K, Hurwitz AS, et al. Three-dimensional MRI atlas of the human cerebellum in proportional stereotaxic space. NeuroImage. 1999;10(3 Pt 1):233–60.Google Scholar
  62. 62.
    Bracha V, Zhao L, Irwin K, Bloedel JR. Intermediate cerebellum and conditioned eyeblinks. Exp Brain Res. 2001;136(1):41–9.Google Scholar
  63. 63.
    Thompson RF, Steinmetz JE. The role of the cerebellum in classical conditioning of discrete behavioral responses. Neuroscience. 2009;162(3):732–55.Google Scholar
  64. 64.
    Woodruff-Pak DS, Thompson RF. Classical conditioning of the eyeblink response in the delay paradigm in adults aged 18-83 years. Psychol Aging. 1988;3(3):219–29.Google Scholar
  65. 65.
    Timmann D, Gerwig M, Frings M, Maschke M, Kolb FP. Eyeblink conditioning in patients with hereditary ataxia: a one-year follow-up study. Exp Brain Res. 2005;162(3):332–45.Google Scholar
  66. 66.
    Claassen J, Mazilescu L, Thieme A, Bracha V, Timmann D. Lack of renewal effect in extinction of naturally acquired conditioned eyeblink responses, but possible dependency on physical context. Exp Brain Res. 2016;234(1):151–9.Google Scholar
  67. 67.
    Sjouwerman R, Niehaus J, Lonsdorf TB. Contextual change after fear acquisition affects conditioned responding and the time course of extinction learning-implications for renewal research. Front Behav Neurosci. 2015;9:337.Google Scholar
  68. 68.
    Bostan AC, Dum RP, Strick PL. Cerebellar networks with the cerebral cortex and basal ganglia. Trends Cogn Sci. 2013;17(5):241–54.Google Scholar
  69. 69.
    Oganesian EA, Melik-Musian AB, Fanardzhian VV, Grigorian I. Morpho-functional analysis of the nature of cerebello-hippocampal connections. Fiziol Zh SSSR Im I M Sechenova. 1980;66(11):1632–9.Google Scholar
  70. 70.
    Yu QX, Gao JF, Wang JJ, Chen J. Hippocampus-cerebellar cortex-cerebellar nuclei projection in the rat: electrophysiological and HRP studies. Sheng Li Xue Bao. 1989;41(3):231–40.Google Scholar
  71. 71.
    Igloi K, Doeller CF, Paradis AL, Benchenane K, Berthoz A, Burgess N, et al. Interaction between hippocampus and cerebellum Crus I in sequence-based but not place-based navigation. Cereb Cortex. 2015;25(11):4146–54.Google Scholar
  72. 72.
    Gerwig M, Hajjar K, Frings M, Dimitrova A, Thilmann AF, Kolb FP, et al. Extinction of conditioned eyeblink responses in patients with cerebellar disorders. Neurosci Lett. 2006;406(1–2):87–91.Google Scholar
  73. 73.
    Maren S, Quirk GJ. Neuronal signalling of fear memory. Nat Rev Neurosci. 2004;5(11):844–52.Google Scholar
  74. 74.
    Kelly RM, Strick PL. Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. J Neurosci. 2003;23(23):8432–44.Google Scholar
  75. 75.
    Dias R, Robbins TW, Roberts AC. Dissociation in prefrontal cortex of affective and attentional shifts. Nature. 1996;380(6569):69–72.Google Scholar
  76. 76.
    Koziol LF, Budding D, Andreasen N, D'Arrigo S, Bulgheroni S, Imamizu H, et al. Consensus paper: the cerebellum’s role in movement and cognition. Cerebellum. 2014;13(1):151–77.Google Scholar
  77. 77.
    Sokolov AA, Miall RC, Ivry RB. The cerebellum: adaptive prediction for movement and cognition. Trends Cogn Sci. 2017;21(5):313–32.Google Scholar
  78. 78.
    Meulders A, Meulders M, Stouten I, De Bie J, Vlaeyen JW. Extinction of fear generalization: a comparison between fibromyalgia patients and healthy control participants. J Pain. 2017;18(1):79–95.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Katharina M. Steiner
    • 1
    Email author
  • Yvonne Gisbertz
    • 1
  • Dae-In Chang
    • 1
    • 2
  • Björn Koch
    • 1
  • Ellen Uslar
    • 1
  • Jens Claassen
    • 1
  • Elke Wondzinski
    • 3
  • Thomas M. Ernst
    • 1
  • Sophia L. Göricke
    • 4
  • Mario Siebler
    • 3
  • Dagmar Timmann
    • 1
  1. 1.Department of Neurology, Essen University HospitalUniversity of Duisburg-EssenEssenGermany
  2. 2.Department of Psychiatry and Psychotherapy, LVR-Hospital Essen, Faculty of MedicineUniversity of Duisburg-EssenEssenGermany
  3. 3.Department of NeurologyMediClin Fachklinik Rhein/RuhrEssenGermany
  4. 4.Institute of Diagnostic and Interventional Radiology and Neuroradiology, Essen University HospitalUniversity of Duisburg-EssenEssenGermany

Personalised recommendations