Advertisement

High Degree of Genetic Heterogeneity for Hereditary Cerebellar Ataxias in Australia

  • Ce Kang
  • Christina Liang
  • Kate E. Ahmad
  • Yufan Gu
  • Sue-Faye Siow
  • James G. Colebatch
  • Scott Whyte
  • Karl Ng
  • Philip D. Cremer
  • Alastair J. Corbett
  • Ryan L. Davis
  • Tony Roscioli
  • Mark J. Cowley
  • Jin-Sung Park
  • Carolyn M. Sue
  • Kishore R. Kumar
Original Paper

Abstract

Genetic testing strategies such as next-generation sequencing (NGS) panels and whole genome sequencing (WGS) can be applied to the hereditary cerebellar ataxias (HCAs), but their exact role in the diagnostic pathway is unclear. We aim to determine the yield from genetic testing strategies and the genetic and phenotypic spectrum of HCA in Australia by analysing real-world data. We performed a retrospective review on 87 HCA cases referred to the Neurogenetics Clinic at the Royal North Shore Hospital, Sydney, Australia. Probands underwent triplet repeat expansion testing; those that tested negative had NGS-targeted panels and WGS testing when available. In our sample, 58.6% were male (51/87), with an average age at onset of 37.1 years. Individuals with sequencing variants had a prolonged duration of illness compared to those with a triplet repeat expansion. The detection rate in probands for routine repeat expansion panels was 13.8% (11/80). NGS-targeted panels yielded a further 11 individuals (11/32, 34.4%), with WGS yielding 1 more diagnosis (1/3, 33.3%). NGS panels and WGS improved the overall diagnostic rate to 28.8% (23/80) in 14 known HCA loci. The genetic findings included novel variants in ANO10, CACNA1A, PRKCG and SPG7. Our findings highlight the genetic heterogeneity of HCAs and support the use of NGS approaches for individuals who were negative on repeat expansion testing. In comparison to repeat disorders, individuals with sequencing variants may have a prolonged duration of illness, consistent with slower progression of disease.

Keywords

Hereditary cerebellar ataxia Spinocerebellar ataxia Genetics Triplet repeat expansion Next-generation sequencing Whole genome sequencing 

Notes

Acknowledgements

K.R.K. is supported by a NHMRC Early Career Fellowship. R.D. was supported by a NHMRC Early Career Fellowship and is now supported by a NSW Health Early Career Fellowship. MJC is supported by a NSW Health Early Career Fellowship. We would like to thank the participating patients and referring clinicians. We would like to acknowledge the following laboratories for performing genetic testing; Molecular Medicine Laboratory Concord Hospital, Centogene, Oxford Molecular Genetics Laboratory and Genome.One.

Compliance with Ethical Standards

Disclosure of Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supplementary material

12311_2018_969_MOESM1_ESM.doc (319 kb)
ESM 1 (DOC 319 kb)

References

  1. 1.
    Harding AE. Classification of the hereditary ataxias and paraplegias. Lancet. 1983;1(8334):1151–5.CrossRefPubMedGoogle Scholar
  2. 2.
    Harding AE. Clinical features and classification of inherited ataxias. Adv Neurol. 1993;61:1–14.PubMedGoogle Scholar
  3. 3.
    Bird TD. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, et al., editors. Hereditary Ataxia Overview. Seattle: GeneReviews((R)); 1993.Google Scholar
  4. 4.
    Storey E, du Sart D, Shaw JH, Lorentzos P, Kelly L, McKinley Gardner RJ, et al. Frequency of spinocerebellar ataxia types 1, 2, 3, 6, and 7 in Australian patients with spinocerebellar ataxia. Am J Med Genet. 2000;95(4):351–7.CrossRefPubMedGoogle Scholar
  5. 5.
    Pandolfo M. Friedreich ataxia: the clinical picture. J Neurol. 2009;256(Suppl 1):3–8.CrossRefPubMedGoogle Scholar
  6. 6.
    Ruano L, Melo C, Silva MC, Coutinho P. The global epidemiology of hereditary ataxia and spastic paraplegia: a systematic review of prevalence studies. Neuroepidemiology. 2014;42(3):174–83.CrossRefPubMedGoogle Scholar
  7. 7.
    Nemeth AH, Kwasniewska AC, Lise S, Parolin Schnekenberg R, Becker EB, Bera KD, et al. Next generation sequencing for molecular diagnosis of neurological disorders using ataxias as a model. Brain. 2013;136(Pt 10):3106–18.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Pyle A, Smertenko T, Bargiela D, Griffin H, Duff J, Appleton M, et al. Exome sequencing in undiagnosed inherited and sporadic ataxias. Brain. 2015;138(Pt 2):276–83.CrossRefPubMedGoogle Scholar
  9. 9.
    Coutelier M, Coarelli G, Monin ML, Konop J, Davoine CS, Tesson C, et al. A panel study on patients with dominant cerebellar ataxia highlights the frequency of channelopathies. Brain. 2017;140(6):1579–94.CrossRefPubMedGoogle Scholar
  10. 10.
    Coutelier M, Hammer MB, Stevanin G, Monin ML, Davoine CS, Mochel F, et al. Efficacy of exome-targeted capture sequencing to detect mutations in known cerebellar ataxia genes. JAMA Neurol. 2018;75(5):591–99.CrossRefPubMedGoogle Scholar
  11. 11.
    van de Warrenburg BP, van Gaalen J, Boesch S, Burgunder JM, Durr A, Giunti P, et al. EFNS/ENS Consensus on the diagnosis and management of chronic ataxias in adulthood. Eur J Neurol. 2014;21(4):552–62.CrossRefPubMedGoogle Scholar
  12. 12.
    Ramirez-Zamora A, Zeigler W, Desai N, Biller J. Treatable causes of cerebellar ataxia. Mov Disord. 2015;30(5):614–23.CrossRefPubMedGoogle Scholar
  13. 13.
    Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405–24.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, Del Angel G, Levy-Moonshine A, et al. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr Protoc Bioinformatics. 2013;43:11 0 1–33.Google Scholar
  15. 15.
    Kumar KR, Wali GM, Kamate M, Wali G, Minoche AE, Puttick C, et al. Defining the genetic basis of early onset hereditary spastic paraplegia using whole genome sequencing. Neurogenetics. 2016;17(4):265–70.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Gayevskiy V, Roscioli T, Dinger ME, Cowley MJ. Seave: a comprehensive web platform for storing and interrogating human genomic variation. Bioinformatics, bty540. bioRxiv.  https://doi.org/10.1101/258061.
  17. 17.
    Census: Australian Bureau of Statistics, 2016, Census of population and housing: Australia revealed, cat. no. 2024.0, viewed 28 June 2018, http://www.abs.gov.au/ausstats/abs@.nsf/Latestproducts/2024.0Main%20Features22016.
  18. 18.
    Balreira A, Boczonadi V, Barca E, Pyle A, Bansagi B, Appleton M, et al. ANO10 mutations cause ataxia and coenzyme Q(1)(0) deficiency. J Neurol. 2014;261(11):2192–8.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Battistini S, Stenirri S, Piatti M, Gelfi C, Righetti PG, Rocchi R, et al. A new CACNA1A gene mutation in acetazolamide-responsive familial hemiplegic migraine and ataxia. Neurology. 1999;53(1):38–43.CrossRefPubMedGoogle Scholar
  20. 20.
    Winkelmann J, Lin L, Schormair B, Kornum BR, Faraco J, Plazzi G, et al. Mutations in DNMT1 cause autosomal dominant cerebellar ataxia, deafness and narcolepsy. Hum Mol Genet. 2012;21(10):2205–10.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Lee YC, Durr A, Majczenko K, Huang YH, Liu YC, Lien CC, et al. Mutations in KCND3 cause spinocerebellar ataxia type 22. Ann Neurol. 2012;72(6):859–69.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Millat G, Bailo N, Molinero S, Rodriguez C, Chikh K, Vanier MT. Niemann-Pick C disease: use of denaturing high performance liquid chromatography for the detection of NPC1 and NPC2 genetic variations and impact on management of patients and families. Mol Genet Metab. 2005;86(1–2):220–32.CrossRefPubMedGoogle Scholar
  23. 23.
    Yamamoto T, Nanba E, Ninomiya H, Higaki K, Taniguchi M, Zhang H, et al. NPC1 gene mutations in Japanese patients with Niemann-Pick disease type C. Hum Genet. 1999;105(1–2):10–6.PubMedGoogle Scholar
  24. 24.
    Roxburgh RH, Marquis-Nicholson R, Ashton F, George AM, Lea RA, Eccles D, et al. The p.Ala510Val mutation in the SPG7 (paraplegin) gene is the most common mutation causing adult onset neurogenetic disease in patients of British ancestry. J Neurol. 2013;260(5):1286–94.CrossRefPubMedGoogle Scholar
  25. 25.
    Ishikawa K, Durr A, Klopstock T, Muller S, De Toffol B, Vidailhet M, et al. Pentanucleotide repeats at the spinocerebellar ataxia type 31 (SCA31) locus in Caucasians. Neurology. 2011;77(20):1853–5.CrossRefPubMedGoogle Scholar
  26. 26.
    Sato N, Amino T, Kobayashi K, Asakawa S, Ishiguro T, Tsunemi T, et al. Spinocerebellar ataxia type 31 is associated with “inserted” penta-nucleotide repeats containing (TGGAA)n. Am J Hum Genet. 2009;85(5):544–57.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Pedersen AG, Nielsen H. Neural network prediction of translation initiation sites in eukaryotes: perspectives for EST and genome analysis. Proc Int Conf Intell Syst Mol Biol. 1997;5:226–33.PubMedGoogle Scholar
  28. 28.
    Chen DH, Brkanac Z, Verlinde CL, Tan XJ, Bylenok L, Nochlin D, et al. Missense mutations in the regulatory domain of PKC gamma: a new mechanism for dominant nonepisodic cerebellar ataxia. Am J Hum Genet. 2003;72(4):839–49.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Fahey MC, Knight MA, Shaw JH, Gardner RJ, du Sart D, Lockhart PJ, et al. Spinocerebellar ataxia type 14: study of a family with an exon 5 mutation in the PRKCG gene. J Neurol Neurosurg Psychiatry. 2005;76(12):1720–2.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Vandebona H, Kerr NP, Liang C, Sue CM. SPAST mutations in Australian patients with hereditary spastic paraplegia. Intern Med J. 2012;42(12):1342–7.CrossRefPubMedGoogle Scholar
  31. 31.
    Kumar KR, Blair NF, Vandebona H, Liang C, Ng K, Sharpe DM, et al. Targeted next generation sequencing in SPAST-negative hereditary spastic paraplegia. J Neurol. 2013;260(10):2516–22.CrossRefPubMedGoogle Scholar
  32. 32.
    Garden G. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, LJH B, Stephens K, et al., editors. Spinocerebellar Ataxia Type 7. Seattle: GeneReviews((R)); 1993.Google Scholar
  33. 33.
    Patterson M. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, et al., editors. Niemann-Pick Disease Type C. Seattle: GeneReviews((R)); 1993.Google Scholar
  34. 34.
    Jacobi H, du Montcel ST, Bauer P, Giunti P, Cook A, Labrum R, et al. Long-term disease progression in spinocerebellar ataxia types 1, 2, 3, and 6: a longitudinal cohort study. Lancet Neurol. 2015;14(11):1101–8.CrossRefPubMedGoogle Scholar
  35. 35.
    Kuo PH, Gan SR, Wang J, Lo RY, Figueroa KP, Tomishon D, et al. Dystonia and ataxia progression in spinocerebellar ataxias. Parkinsonism Relat Disord. 2017;45:75–80.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Galatolo D, Tessa A, Filla A, Santorelli FM. Clinical application of next generation sequencing in hereditary spinocerebellar ataxia: increasing the diagnostic yield and broadening the ataxia-spasticity spectrum. A retrospective analysis. Neurogenetics. 2018;19(1):1–8.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Ce Kang
    • 1
  • Christina Liang
    • 2
    • 3
  • Kate E. Ahmad
    • 2
    • 3
  • Yufan Gu
    • 2
    • 3
  • Sue-Faye Siow
    • 2
    • 3
  • James G. Colebatch
    • 4
    • 5
  • Scott Whyte
    • 6
  • Karl Ng
    • 3
  • Philip D. Cremer
    • 3
  • Alastair J. Corbett
    • 7
  • Ryan L. Davis
    • 1
    • 2
  • Tony Roscioli
    • 4
    • 8
  • Mark J. Cowley
    • 9
    • 10
  • Jin-Sung Park
    • 2
    • 11
  • Carolyn M. Sue
    • 2
    • 3
  • Kishore R. Kumar
    • 2
    • 3
    • 9
  1. 1.Faculty of Medicine and Health, Kolling Institute of Medical ResearchUniversity of Sydney Northern Clinical SchoolSt LeonardsAustralia
  2. 2.Department of Neurogenetics, Kolling InstituteUniversity of Sydney and Northern Sydney Local Health DistrictSt LeonardsAustralia
  3. 3.Department of NeurologyRoyal North Shore HospitalSt LeonardsAustralia
  4. 4.Prince of Wales Clinical School and Neuroscience Research AustraliaUniversity of New South WalesRandwickAustralia
  5. 5.Institute of Neurological SciencesPrince of Wales HospitalRandwickAustralia
  6. 6.Department of NeurologyGosford HospitalGosfordAustralia
  7. 7.Department of NeurologyConcord Repatriation General HospitalConcordAustralia
  8. 8.Department of Clinical GeneticsSydney Children’s HospitalRandwickAustralia
  9. 9.Kinghorn Centre for Clinical GenomicsGarvan Institute of Medical ResearchDarlinghurstAustralia
  10. 10.St Vincent’s Clinical SchoolUniversity of New South WalesDarlinghurstAustralia
  11. 11.Department of Experimental Animal Research, Seoul National University HospitalBiomedical Research InstituteSeoulRepublic of Korea

Personalised recommendations