Advertisement

The Cerebellum

, Volume 18, Issue 1, pp 109–118 | Cite as

Cerebellar Structural Variations in Subjects with Different Hypnotizability

  • E PicerniEmail author
  • EL Santarcangelo
  • D Laricchiuta
  • D Cutuli
  • L Petrosini
  • G Spalletta
  • F Piras
Original Paper
  • 75 Downloads

Abstract

Hypnotizability—the proneness to accept suggestions and behave accordingly—has a number of physiological and behavioral correlates (postural, visuomotor, and pain control) which suggest a possible involvement of cerebellar function and/or structure. The present study was aimed at investigating the association between cerebellar macro- or micro-structural variations (analyzed through a voxel-based morphometry and a diffusion tensor imaging approach) and hypnotic susceptibility. We also estimated morphometric variations of cerebral gray matter structures, to support current evidence of hypnotizability-related differences in some cerebral areas. High (highs, N = 12), and low (lows, N = 37) hypnotizable healthy participants (according to the Stanford Hypnotic Susceptibility Scale, form A) were submitted to a high field (3 T) magnetic resonance imaging protocol. In comparison to lows, highs showed smaller gray matter volumes in left cerebellar lobules IV/V and VI at uncorrected level, with the results in left lobule IV/V maintained also at corrected level. Highs showed also gray matter volumes smaller than lows in right inferior temporal gyrus, middle and superior orbitofrontal cortex, parahippocampal gyrus, and supramarginal parietal gyrus, as well as in left gyrus rectus, insula, and middle temporal cortex at uncorrected level. Results of right inferior temporal gyrus survived also at corrected level. Analyses on micro-structural data failed to reveal any significant association. The here found morphological variations allow to extend the traditional cortico-centric view of hypnotizability to the cerebellar regions, suggesting that cerebellar peculiarities may sustain hypnotizability-related differences in sensorimotor integration and emotional control.

Keywords

Hypnotizability Cerebellum Voxel-based morphometry Diffusion tensor imaging Individual differences 

Notes

Compliance with Ethical Standards

The Local Ethics Committee of the I.R.C.C.S. Santa Lucia Foundation approved the study and written consent was obtained from all participants after a full explanation of the study procedures. The authors assert that all procedures contributing to this work comply with the ethical standards of the relevant national and institutional committees on human experimentation and with the Helsinki Declaration of 1975, as revised in 2008.

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Elkins GR, Barabasz AF, Council JR, Spiegel D. Advancing research and practice: the revised APA division 30 definition of hypnosis. Int J Clin Exp Hypn. England. 2015;63:1–9.CrossRefGoogle Scholar
  2. 2.
    Meyer EC, Lynn SJ. Responding to hypnotic and nonhypnotic suggestions: performance standards, imaginative suggestibility, and response expectancies. Int J Clin Exp Hypn England. 2011;59:327–49.CrossRefGoogle Scholar
  3. 3.
    De Pascalis V, Bellusci A, Russo PM. Italian norms for the Stanford hypnotic susceptibility scale, form C. Int J Clin Exp Hypn. England. 2000;48:315–23.CrossRefGoogle Scholar
  4. 4.
    Carvalho C, Kirsch I, Mazzoni G, Leal I. Portuguese norms for the Waterloo-Stanford Group C (WSGC) scale of hypnotic susceptibility. Int J Clin Exp Hypn. England. 2008;56:295–305.CrossRefGoogle Scholar
  5. 5.
    Kogon MM, Jasiukaitis P, Berardi A, Gupta M, Kosslyn SM, Spiegel D. Imagery and hypnotizability revisited. Int J Clin Exp Hypn. England. 1998;46:363–70.CrossRefGoogle Scholar
  6. 6.
    Lynn SJ, Rhue JW. The fantasy-prone person: hypnosis, imagination, and creativity. J Pers Soc Psychol. United States. 1986;51:404–8.CrossRefGoogle Scholar
  7. 7.
    Council JR, Kirsch I, Hafner LP. Expectancy versus absorption in the prediction of hypnotic responding. J Pers Soc Psychol United States. 1986;50:182–9.CrossRefGoogle Scholar
  8. 8.
    Kallio S, Revonsuo A, Hamalainen H, Markela J, Gruzelier J. Anterior brain functions and hypnosis: a test of the frontal hypothesis. Int J Clin Exp Hypn. England. 2001;49:95–108.CrossRefGoogle Scholar
  9. 9.
    Council JR, Green JP. Examining the absorption-hypnotizability link: the roles of acquiescence and consistency motivation. Int J Clin Exp Hypn. England. 2004;52:364–77.CrossRefGoogle Scholar
  10. 10.
    Santarcangelo EL, Scattina E. Complementing the latest APA definition of hypnosis: sensory-motor and vascular peculiarities involved in hypnotizability. Int J Clin Exp Hypn. England. 2016;64:318–30.CrossRefGoogle Scholar
  11. 11.
    Jamieson GA, Burgess AP. Hypnotic induction is followed by state-like changes in the organization of EEG functional connectivity in the theta and beta frequency bands in high-hypnotically susceptible individuals. Front Hum Neurosci. Switzerland. 2014;8:528.Google Scholar
  12. 12.
    Yargholi E, Nasrabadi AM. Recurrence quantification analysis of electroencephalograph signals during standard tasks of Waterloo-Stanford group scale of hypnotic susceptibility. J Med Eng Technol England. 2015;39:26–34.CrossRefGoogle Scholar
  13. 13.
    Cojan Y, Piguet C, Vuilleumier P. What makes your brain suggestible? Hypnotizability is associated with differential brain activity during attention outside hypnosis. Neuroimage [Internet]. Elsevier Inc.; 2015;117:367–74. Available from:  https://doi.org/10.1016/j.neuroimage.2015.05.076
  14. 14.
    McGeown WJ, Mazzoni G, Vannucci M, Venneri A. Structural and functional correlates of hypnotic depth and suggestibility. Psychiatry Res - Neuroimaging [internet]. Elsevier; 2015;231:151–159. Available from:  https://doi.org/10.1016/j.pscychresns.2014.11.015
  15. 15.
    Facco E, Testoni I, Ronconi L, Casiglia E, Zanette G, Spiegel D. Psychological features of hypnotizability: a first step towards its empirical definition. Int J Clin Exp Hypn. England. 2017;65:98–119.CrossRefGoogle Scholar
  16. 16.
    Hoeft F, Gabrieli JDE, Whitfield-Gabrieli S, Haas BW, Bammer R, Menon V, et al. Functional brain basis of hypnotizability. Arch Gen Psychiatry United States. 2012;69:1064–72.CrossRefGoogle Scholar
  17. 17.
    Huber A, Lui F, Duzzi D, Pagnoni G, Porro CA. Structural and functional cerebral correlates of hypnotic suggestibility. PLoS One. 2014;9:e93187.CrossRefGoogle Scholar
  18. 18.
    Jiang H, White MP, Greicius MD, Waelde LC, Spiegel D. Brain activity and functional connectivity associated with hypnosis. Cereb Cortex. 2017;27:4083–93.PubMedGoogle Scholar
  19. 19.
    Horton JE, Crawford HJ, Harrington G, Downs JH. Increased anterior corpus callosum size associated positively with hypnotizability and the ability to control pain. Brain. 2004;127:1741–7.CrossRefGoogle Scholar
  20. 20.
    Weitzenhoffer AM Hilgard E. Scala Stanford di Suscettibilità Ipnotica, forme A, B. Versione italiana. Organizzazioni Speciali Firenze; 1959.Google Scholar
  21. 21.
    Basser PJ, Pierpaoli C. Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson B United States. 1996;111:209–19.CrossRefGoogle Scholar
  22. 22.
    Le Bihan D. The “wet mind”: water and functional neuroimaging. Phys Med Biol England. 2007;52:R57–90.CrossRefGoogle Scholar
  23. 23.
    Laricchiuta D, Petrosini L, Picerni E, Cutuli D, Iorio M, Chiapponi C, et al. The embodied emotion in cerebellum: a neuroimaging study of alexithymia. Brain Struct Funct. 2014;Google Scholar
  24. 24.
    Laricchiuta D, Petrosini L, Piras F, Macci E, Cutuli D, Chiapponi C, et al. Linking novelty seeking and harm avoidance personality traits to cerebellar volumes. Hum Brain Mapp. 2014;35:285–96.CrossRefGoogle Scholar
  25. 25.
    Picerni E, Petrosini L, Piras F, Laricchiuta D, Cutuli D, Chiapponi C, et al. New evidence for the cerebellar involvement in personality traits. Front Behav Neurosci [Internet]. 2013;7:133. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3788336&tool=pmcentrez&rendertype=abstract
  26. 26.
    Oldfield RC. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia England. 1971;9:97–113.CrossRefGoogle Scholar
  27. 27.
    Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. England. 1975;12:189–98.CrossRefGoogle Scholar
  28. 28.
    Measso G, Zappala G, Cavarzeran F, Crook TH, Romani L, Pirozzolo FJ, et al. Raven’s colored progressive matrices: a normative study of a random sample of healthy adults. Acta Neurol Scand Denmark. 1993;88:70–4.CrossRefGoogle Scholar
  29. 29.
    Carlesimo GA, Caltagirone C, Gainotti G. The Mental Deterioration Battery: normative data, diagnostic reliability and qualitative analyses of cognitive impairment. The Group for the Standardization of the Mental Deterioration Battery. Eur Neurol. Switzerland. 1996;36:378–84.CrossRefGoogle Scholar
  30. 30.
    McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CRJ, Kawas CH, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement U S. 2011;7:263–9.CrossRefGoogle Scholar
  31. 31.
    First MB, Gibbon M, Spitzer RL, Williams JB. Structured clinical interview for DSM-IV Axis II personality disorders (SCID-II). Washington, DC: American Psychiatric Press; 1997.Google Scholar
  32. 32.
    Weitzenhoffer AM. Hypnotic susceptibility: a personal and historical note regarding the development and naming of the Stanford Scales. Int J Clin Exp Hypn. England. 1997;45:126–43.CrossRefGoogle Scholar
  33. 33.
    Ashburner J, Friston KJ. Unified segmentation. Neuroimage. US. 2005;26:839–51.CrossRefGoogle Scholar
  34. 34.
    Wiest-Daessle N, Prima S, Coupe P, Morrissey SP, Barillot C. Rician noise removal by non-local means filtering for low signal-to-noise ratio MRI: applications to DT-MRI. Med Image Comput Comput Assist Interv. Germany. 2008;11:171–9.Google Scholar
  35. 35.
    Ashburner J. A fast diffeomorphic image registration algorithm. Neuroimage United States. 2007;38:95–113.CrossRefGoogle Scholar
  36. 36.
    Sykova E, Nicholson C. Diffusion in brain extracellular space. Physiol Rev United States. 2008;88:1277–340.Google Scholar
  37. 37.
    Kantarci K, Senjem ML, Avula R, Zhang B, Samikoglu AR, Weigand SD, et al. Diffusion tensor imaging and cognitive function in older adults with no dementia. Neurology United States. 2011;77:26–34.CrossRefGoogle Scholar
  38. 38.
    Pierpaoli C, Jezzard P, Basser PJ, Barnett A, Di Chiro G. Diffusion tensor MR imaging of the human brain. Radiology United States. 1996;201:637–48.Google Scholar
  39. 39.
    Andersson JLR, Jenkinson M, Smith S. Non-linear registration, aka spatial normalisation. FMRIB Technial Report TR07JA2. Oxford Cent Funct Magn Reson Imaging Brain, Dep Clin Neurol Oxford Univ Oxford, UK. 2007;22.Google Scholar
  40. 40.
    Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, Mackay CE, Watkins KE, Ciccarelli O, Cader MZ, Matthews PM, Behrens TEJ Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage. United States; 2006;31:1487–1505.Google Scholar
  41. 41.
    Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage. United States. 2002;15:273–89.CrossRefGoogle Scholar
  42. 42.
    Diedrichsen J, Balsters JH, Flavell J, Cussans E, Ramnani N. A probabilistic MR atlas of the human cerebellum. Neuroimage [Internet]. Elsevier B.V.; 2009 [cited 2014 Jul 11];46:39–46. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19457380.
  43. 43.
    Winkler AM, Ridgway GR, Webster MA, Smith SM, Nichols TE. Permutation inference for the general linear model. Neuroimage [internet]. The Authors; 2014;92:381–397. Available from:  https://doi.org/10.1016/j.neuroimage.2014.01.060
  44. 44.
    Nichols TE, Holmes AP. Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum Brain Mapp United States. 2002;15:1–25.CrossRefGoogle Scholar
  45. 45.
    Smith SM, Nichols TE. Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference. Neuroimage. United States. 2009;44:83–98.CrossRefGoogle Scholar
  46. 46.
    Scattina E, Huber A, Menzocchi M, Paoletti G, Carli G, Manzoni D, et al. Postural effects of imagined leg pain as a function of hypnotizability. Exp brain Res. Germany; 2012;216:341–348.Google Scholar
  47. 47.
    Stoodley CJ, Schmahmann JD. Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex [Internet]. Elsevier Srl; 2010 [cited 2014 Jul 12];46:831–44. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2873095&tool=pmcentrez&rendertype=abstract
  48. 48.
    Sauvage C, Jissendi P, Seignan S, Manto M, Habas C. Brain areas involved in the control of speed during a motor sequence of the foot: real movement versus mental imagery. J Neuroradiol France. 2013;40:267–80.CrossRefGoogle Scholar
  49. 49.
    Belkhiria C, Driss T, Habas C, Jaafar H, Guillevin R, de Marco G. Exploration and identification of cortico-cerebellar-brainstem closed loop during a motivational-motor task: an fMRI study. Cerebellum United States. 2017;16:326–39.CrossRefGoogle Scholar
  50. 50.
    Halligan PW, Athwal BS, Oakley DA, Frackowiak RS. Imaging hypnotic paralysis: implications for conversion hysteria. Lancet (London, England). England; 2000. p. 986–7.Google Scholar
  51. 51.
    O’Reilly JX, Beckmann CF, Tomassini V, Ramnani N, Johansen-Berg H. Distinct and overlapping functional zones in the cerebellum defined by resting state functional connectivity. Cereb Cortex [Internet]. 2010 [cited 2014 Jul 30];20:953–65. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2837094&tool=pmcentrez&rendertype=abstract
  52. 52.
    Sultan F, Augath M, Hamodeh S, Murayama Y, Oeltermann A, Rauch A, Thier P Unravelling cerebellar pathways with high temporal precision targeting motor and extensive sensory and parietal networks. Nat Commun [Internet]. Nat Publ Group; 2012;3:924. Available from:  https://doi.org/10.1038/ncomms1912
  53. 53.
    De Pascalis V, Russo E. Hypnotizability, hypnosis and prepulse inhibition of the startle reflex in healthy women: an ERP analysis. PLoS One. 2013;8:e79605.CrossRefGoogle Scholar
  54. 54.
    Cauda F, Costa T, Torta DME, Sacco K, D’Agata F, Duca S, et al. Meta-analytic clustering of the insular cortex: characterizing the meta-analytic connectivity of the insula when involved in active tasks. Neuroimage. United States. 2012;62:343–55.CrossRefGoogle Scholar
  55. 55.
    Craig ADB. Significance of the insula for the evolution of human awareness of feelings from the body. Ann N Y Acad Sci. United States. 2011;1225:72–82.CrossRefGoogle Scholar
  56. 56.
    Herwig U, Kaffenberger T, Schell C, Jancke L, Bruhl AB. Neural activity associated with self-reflection. BMC Neurosci. England. 2012;13:52.CrossRefGoogle Scholar
  57. 57.
    Gu X, Gao Z, Wang X, Liu X, Knight RT, Hof PR, et al. Anterior insular cortex is necessary for empathetic pain perception. Brain England. 2012;135:2726–35.CrossRefGoogle Scholar
  58. 58.
    Terhune DB, Hedman LRA. Metacognition of agency is reduced in high hypnotic suggestibility. Cognition Netherlands. 2017;168:176–81.CrossRefGoogle Scholar
  59. 59.
    Ebisch SJH, Bello A, Spitoni GF, Perrucci MG, Gallese V, Committeri G, Pastorelli C, Pizzamiglio L Emotional susceptibility trait modulates insula responses and functional connectivity in flavor processing. Front Behav Neurosci [Internet] 2015;9:1–14. Available from:  https://doi.org/10.3389/fnbeh.2015.00297
  60. 60.
    Kirenskaya AV, Novototsky-Vlasov VY, Chistyakov AN, Zvonikov VM. The relationship between hypnotizability, internal imagery, and efficiency of neurolinguistic programming. Int J Clin Exp Hypn. England. 2011;59:225–41.CrossRefGoogle Scholar
  61. 61.
    Younger JW, Rossetti GC, Borckardt JJ, Smith AR, Tasso AF, Nash MR. Hypnotizability and somatic complaints: a gender-specific phenomenon. Int J Clin Exp Hypn. England. 2007;55:1–13.CrossRefGoogle Scholar
  62. 62.
    Derbyshire SWG, Whalley MG, Stenger VA, Oakley DA. Cerebral activation during hypnotically induced and imagined pain. NeuroImage. 2004;23:392–401.CrossRefGoogle Scholar
  63. 63.
    Schmahmann JD, Pandya DN. Prefrontal cortex projections to the basilar pons in rhesus monkey: implications for the cerebellar contribution to higher function. Neurosci Lett. 1995;199:175–8.CrossRefGoogle Scholar
  64. 64.
    Allen G, McColl R, Barnard H, Ringe WK, Fleckenstein J, Cullum CM. Magnetic resonance imaging of cerebellar-prefrontal and cerebellar-parietal functional connectivity. Neuroimage. 2005;Google Scholar
  65. 65.
    Oulad Ben Taib N, Manto M. Reinstating the ability of the motor cortex to modulate cutaneomuscular reflexes in hemicerebellectomized rats. Brain Res. 2008;Google Scholar
  66. 66.
    Olivito G, Dayan M, Battistoni V, Clausi S, Cercignani M, Molinari M, et al. Bilateral effects of unilateral cerebellar lesions as detected by voxel based morphometry and diffusion imaging. PLoS One. 2017;Google Scholar
  67. 67.
    Gazzaley A, D’Esposito M. Top-down modulation and normal aging. Ann N Y Acad Sci. United States. 2007;1097:67–83.CrossRefGoogle Scholar
  68. 68.
    Lynn SJ, Boycheva E, Barnes S. To assess or not assess hypnotic suggestibility? That is the question. Am J Clin Hypn United States. 2008;51:161–84.CrossRefGoogle Scholar
  69. 69.
    Ito M. Control of mental activities by internal models in the cerebellum. Nat Rev Neurosci England. 2008;9:304–13.CrossRefGoogle Scholar
  70. 70.
    Synofzik M, Lindner A, Thier P. The cerebellum updates predictions about the visual consequences of one’s behavior. Curr Biol England. 2008;18:814–8.CrossRefGoogle Scholar
  71. 71.
    Ito M. Error detection and representation in the olivo-cerebellar system. Front Neural Circuits. Switzerland. 2013;7:1.Google Scholar
  72. 72.
    Kellermann T, Regenbogen C, De Vos M, Mossnang C, Finkelmeyer A, Habel U. Effective connectivity of the human cerebellum during visual attention. J Neurosci. 2012;32:11453–60.CrossRefGoogle Scholar
  73. 73.
    Terhune DB, Cardena E, Lindgren M. Dissociative tendencies and individual differences in high hypnotic suggestibility. Cogn Neuropsychiatry England. 2011;16:113–35.CrossRefGoogle Scholar
  74. 74.
    Terhune DB, Cardeña E. Heterogeneity in high hypnotic suggestibility and the neurophysiology of hypnosis. Neurophysiol Clin. 2015;45:177–8.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.I.R.C.C.S. Santa Lucia FoundationRomeItaly
  2. 2.Department of PsychologyUniversity “Sapienza” of RomeRomeItaly
  3. 3.Department of Translational Research and New Technologies in Medicine and SurgeryPisa UniversityPisaItaly

Personalised recommendations