The Cerebello-Hypothalamic and Hypothalamo-Cerebellar Pathways via Superior and Middle Cerebellar Peduncle in the Rat

  • Safiye Çavdar
  • Merve Özgur
  • Yasemin Kuvvet
  • Husniye Hacıoğlu Bay
Original Paper
  • 24 Downloads

Abstract

The connections between the cerebellum and the hypothalamus have been well documented. However, the specific cerebellar peduncle through which the hypothalamo-cerebellar and cerebello-hypothalamic connections pass has not been demonstrated. The present study aims to define the specific cerebellar peduncle through which connects the cerebellum to specific hypothalamic nuclei. Seventeen male albino rats received 20–50-nl pressure injections of either Fluoro-Gold (FG) or biotinylated dextran amine (BDA) tracer into the superior (SCP), middle (MCP), and inferior (ICP) cerebellar peduncle. Following 7–10 days of survival period, the animals were processed according to the appropriate protocol for the two tracers used. Labeled cells and axons were documented using light or fluorescence microscopy. The present study showed connections between the hypothalamus and the cerebellum via both the SCP and the MCP but not the ICP. The hypothalamo-cerebellar connections via the SCP were from the lateral, dorsomedial, paraventricular, and posterior hypothalamic nuclei, and cerebello-hypothalamic connections were to the preoptic and lateral hypothalamic nuclei. The hypothalamo-cerebellar connections via the MCP were from the lateral, dorsomedial, ventromedial, and mammillary hypothalamic nuclei; and cerebello-hypothalamic connections were to the posterior, arcuate, and ventromedial hypothalamic nuclei. The hypothlamo-cerebellar connections were denser compared to the cerebello-hypothlamic connections via both the SCP and the MCP. The connection between the cerebellum and the hypothalamus was more prominent via the SCP than MCP. Both the hypothlamo-cerebellar and cerebello-hypothalamic connections were bilateral, with ipsilateral preponderance. Reciprocal connections were with the lateral hypothalamic nucleus via the SCP and the ventromedial nucleus via the MCP were observed. Cerebellum takes part in the higher order brain functions via its extensive connections. The knowledge of hypothalamo-cerebellar and cerebello-hypothalamic connections conveyed within the SCP and MCP can be important for the lesions involving the MCP and SCP. These connections can also change the conceptual architecture of the cerebellar circuitry and deepen current understanding.

Keywords

Hypothalamus Cerebellar Connections Superior Middle Cerebellar peduncle 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Holmes MJ, Cotter LA, Arendt HE, Cass SP, Yates BJ. Effects of lesions of the caudal cerebellar vermis on cardiovascular regulation in awake cats. Brain Res. 2002;938(1–2):62–72.CrossRefPubMedGoogle Scholar
  2. 2.
    Zhu JN, Yung WH, Kwok-Chong Chow B, Chan YS, Wang JJ. The cerebellar-hypothalamic circuits: potential pathways underlying cerebellar involvement in somatic-visceral integration. Brain Res Rev. 2006;52(1):93–106.CrossRefPubMedGoogle Scholar
  3. 3.
    Xu F, Frazier DT. Role of the cerebellar deep nuclei in respiratory modulation. Cerebellum. 2002;1(1):35–40.CrossRefPubMedGoogle Scholar
  4. 4.
    Zhuang J, Xu F, Frazier DT. Hyperventilation evoked by activation of the vicinity of the caudal inferior olivary nucleus depends on the fastigial nucleus in anesthetized rats. J Appl Physiol. 2008;104(5):1351–8.CrossRefPubMedGoogle Scholar
  5. 5.
    Ladabaum U, Minoshima S, Hasler WL, Cross D, Chey WD, Owyang C. Gastric distention correlates with activation of multiple cortical and subcortical regions. Gastroenterology. 2001;120(2):369–76.CrossRefPubMedGoogle Scholar
  6. 6.
    Alexander MP, Gillingham S, Schweizer T, Stuss DT. Cognitive impairments due to focal cerebellar injuries in adults. Cortex. 2012;48:980–90.CrossRefPubMedGoogle Scholar
  7. 7.
    Thürling M, Hautzel H, Küper M, Stefanescu MR, Maderwald S, Ladd ME, et al. Involvement of the cerebellar cortex and nuclei in verbal and visuospatial working memory: a 7T fMRI study. NeuroImage. 2012;62:1537–50.Google Scholar
  8. 8.
    Xu LY, Xu FC, Liu C, Ji YF, Wu JM, Wang Y, et al. Relationship between cerebellar structure and emotional memory in depression. Brain Behav. 2017;7(7):e00738.Google Scholar
  9. 9.
    Peng YP, Qiu YH, Cao BB, Wang JJ. Effect of lesions of cerebellar fastigial nuclei on lymphocyte functions of rats. Neurosci Res. 2005;51:275–84.CrossRefPubMedGoogle Scholar
  10. 10.
    Peng YP, Qiu YH, Qiu J, Wang JJ. Cerebellar interposed nucleus lesions suppress lymphocyte function in rats. Brain Res Bull. 2006;71:10–7.CrossRefPubMedGoogle Scholar
  11. 11.
    Lu JH, Mao HN, Cao BB, Qlu YH. Effect of cerebellohypothalamic glutamatergic projections on immune function. Cerebellum. 2012;11(4):905–16.CrossRefPubMedGoogle Scholar
  12. 12.
    Dietrichs E, Haines DE. Demonstration of hypothalamo-cerebellar and cerebello-hypothalamic fibres in a prosimian primate (Galago crassicaudatus). Anat Embryol. (Berl). 1984;170(3):313–8.CrossRefGoogle Scholar
  13. 13.
    Dietrichs E, Haines DE. Observations on the cerebello-hypothalamic projection, with comments on non-somatic cerebellar circuits. Arch Ital Biol. 1985;123(2):133–9.PubMedGoogle Scholar
  14. 14.
    Dietrichs E, Haines DE. Do the same hypothalamic neurons project to both amygdala and cerebellum? Brain Res. 1986;364(2):241–8.CrossRefPubMedGoogle Scholar
  15. 15.
    Haines DE, Dietrichs E, Mihailoff GA, McDonald EF. The cerebellar-hypothalamic axis: basic circuits and clinical observations. Int Rev Neurobiol. 1997;41:83–107.CrossRefPubMedGoogle Scholar
  16. 16.
    Rutherford JG. An investigation of a possible direct projection from the medial nucleus of the cerebellum to the paraventricular nucleus of the hypothalamus in the rat: a study using retrograde WGA-HRP and Fluoro-gold tracing techniques. Anat Embryol. (Berl). 1995;192(3):229–38.CrossRefGoogle Scholar
  17. 17.
    Cavdar S, San T, Aker R, Sehirli U, Onat F. Cerebellar connections to the dorsomedial and posterior nuclei of the hypothalamus in the rat. J Anat. 2001;198:37–45.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Cavdar S, Onat F, Aker R, Sehirli U, San T, Yananli HR. The afferent connections of the posterior hypothalamic nucleus in the rat using horseradish peroxidase. J Anat. 2001;198:463–72.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Onat F, Cavdar S. Cerebellar connections: hypothalamus. Cerebellum. 2003;2(4):263–9.CrossRefPubMedGoogle Scholar
  20. 20.
    Wallenberg A. Sekundäre Bahnen aus dem frontalen sensiblen Trigeminuskerne des Kaninchens. Anat Anz. 1905;26:145–55.Google Scholar
  21. 21.
    Pu YM, Wang JJ, Wang T, Yu QX. Cerebellar interpositus nucleus modulates neuronal activity of lateral hypothalamic area. Neurorepor. 1995;6(7):985–8.CrossRefGoogle Scholar
  22. 22.
    Carpenter MB. Cortex of Neuroanatomy 3rd edition Williams and Wilkins Baltimore, 1985;pp210–21.Google Scholar
  23. 23.
    Akhlaghi H, Corben L, Georgiou-Karistianis N, Bradshaw J, Storey E, Delatycki MB, et al. Superior cerebellar peduncle atrophy in Friedreich’s ataxia correlates with disease symptoms. Cerebellum. 2011;10(1):81–7.Google Scholar
  24. 24.
    Pagani E, Ginestroni A, Della Nave R, Agosta F, Salvi F, De Michele G, et al. Assessment of brain white matter fiber bundle atrophy in patients with Friedreich ataxia. Radiology. 2010;255(3):882–9.CrossRefPubMedGoogle Scholar
  25. 25.
    Nicoletti G, Tonon C, Lodi R, Condino F, Manners D, Malucelli E, et al. Apparent diffusion coefficient of the superior cerebellar peduncle differentiates progressive supranuclear palsy from Parkinson’s disease. Mov Disord. 2008;23(16):2370–6.CrossRefPubMedGoogle Scholar
  26. 26.
    Wang F, Sun Z, Du X, Wang X, Cong Z, Zhang H, et al. A diffusion tensor imaging study of middle and superior cerebellar peduncle in male patients with schizophrenia. Neurosci Lett. 2003;48(3):35–8.Google Scholar
  27. 27.
    Okugawa G, Nobuhara K, Minami T, Takase K, Sugimoto T, Saito Y, et al. Neural disorganization in the superior cerebellar peduncle and cognitive abnormality in patients with schizophrenia: a diffusion tensor imaging study. Prog Neuro-Psychopharmacol Biol Psychiatry. 2006;30(8):1408–12.Google Scholar
  28. 28.
    Picard H, Amado I, Mouchet-Mages S, Olie J, Krebs M. The role of the cerebellum in schizophrenia: an update of clinical, cognitive, and functional evidences. Schizophr Bull. 2008;34(1):155–72.CrossRefPubMedGoogle Scholar
  29. 29.
    Oka M, Katayama S, Imon Y, Ohshita T, Mimori Y, Nakamura S. Abnormal signals on proton density-weighted MRI of the superior cerebellar peduncle in progressive supranuclear palsy. Acta Neurol Scand. 2001;104(1):1–5.CrossRefPubMedGoogle Scholar
  30. 30.
    Kataoka H, Tonomura Y, Taoka T, Ueno S. Signal changes of superior cerebellar peduncle on fluid-attenuated inversion recovery in progressive supranuclear palsy. Parkinsonism Relat Disord. 2008;14(1):63–5.CrossRefPubMedGoogle Scholar
  31. 31.
    Tsuboi Y, Slowinski J, Josephs KA, Honer WG, Wszolek ZK, Dickson DW. Atrophy of superior cerebellar peduncle in progressive supranuclear palsy. Neurology. 2003;60(11):1766–9.CrossRefPubMedGoogle Scholar
  32. 32.
    Paviour DC, Price SL, Stevens JM, Lees AJ, Fox NC. Quantitative MRI measurement of superior cerebellar peduncle in progressive supranuclear palsy. Neurology. 2005;64(4):675–9.CrossRefPubMedGoogle Scholar
  33. 33.
    Poretti A, Boltshauser E, Loenneker T, Valente EM, Brancati F, Il'yasov K, et al. Diffusion tensor imaging in Joubert syndrome. AJNR Am J Neuroradiol. 2007;28(10):1929–33.Google Scholar
  34. 34.
    Spampinato MV, Kraas J, Maria BL, Walton ZJ, Rumboldt Z. Absence of decussation of the superior cerebellar peduncles in patients with Joubert syndrome. Am J Med Genet A. 2008;146A(11):1389–94.CrossRefPubMedGoogle Scholar
  35. 35.
    Parisi MA, Pinter JD, Glass IA, Field K, Maria BL, Chance PF, et al. Cerebral and cerebellar motor activation abnormalities in a subject with Joubert syndrome: functional magnetic resonance imaging (MRI) study. J Child Neurol. 2004;19(3):214–8.Google Scholar
  36. 36.
    Ferland RJ, Eyaid W, Collura RV, Tully LD, Hill RS, Al-Nouri D, et al. Abnormal cerebellar development and axonal decussation due to mutations in AHI1 in Joubert syndrome. Nat Genet 2004;36(9):1008–13. Erratum in: Nat Genet. 2004; 36(10):1126.Google Scholar
  37. 37.
    Quisling RG, Barkovich AJ, Maria BL. Magnetic resonance imaging features and classification of central nervous system malformations in Joubert syndrome. J Child Neurol. 1999;14(10):628–35.CrossRefPubMedGoogle Scholar
  38. 38.
    Zheng ZH, Dietrichs E, Walberg F. Cerebellar afferent fibres from the dorsal motor vagal nucleus in the cat. Neurosci Lett. 1982;32(2):113–8.CrossRefPubMedGoogle Scholar
  39. 39.
    Chida K, Iadecola C, Underwood MD, Reis DJ. A novel vasodepressor response elicited from the rat cerebellar fastigial nucleus: the fastigial depressor response. Brain Res. 1986;370:378–82.CrossRefPubMedGoogle Scholar
  40. 40.
    Jacobs VL. The cerebellofugal system in the tarsius (Tarsiidae carbonarius) and the marmoset (Oedipomidas oedipus). In: Doctoral dissertation. Lawrence, Kansas, USA: University of Kansas; 1965.Google Scholar
  41. 41.
    Martin GF, King JS, Dom R. The projections of the deep cerebellar nuclei of the opossum, Didelphis marsupialis virginiana. J fuXr Hirnforschung. 1974;15:545–73.Google Scholar
  42. 42.
    Cao BB, Huang Y, Lu JH, Xu FF, Qiu YH, Peng YP. Cerebellar fastigial nuclear GABAergic projections to the hypothalamus modulate immunefunction. Brain Behav Immun. 2013;27(1):80.CrossRefPubMedGoogle Scholar
  43. 43.
    Somana R, Walberg F. The cerebellar projection from the paratrigeminal nucleus in the cat. Neurosci Lett. 1979;15(1):49–54.CrossRefPubMedGoogle Scholar
  44. 44.
    Somana R, Walberg F. The cerebellar projection from the parabrachial nucleus in the cat. Brain Res. 1979;172(1):144–9.CrossRefPubMedGoogle Scholar
  45. 45.
    Somana R, Walberg F. Cerebellar afferents from the nucleus of the solitary tract. Neurosci Lett. 1979;11(1):41–7.CrossRefPubMedGoogle Scholar
  46. 46.
    Somana R, Kotchabhakdi N, Walberg F. Cerebellar afferents from the trigeminal sensory nuclei in the cat. Exp Brain Res. 1980;38:57–64.CrossRefPubMedGoogle Scholar
  47. 47.
    Dietrichs E, Røste GK, Røste LS, Qvist HL, Haines DE. The hypothalamocerebellar projection in the cat: branching and nuclear termination. Arch Ital Biol. 1994 Jan;132(1):25–38.PubMedGoogle Scholar
  48. 48.
    Palesi F, De Rinaldis A, Castellazzi G, Calamante F, Muhlert N, Chard D, et al. Contralateral cortico-ponto cerebellar pathways reconstruction in humans in vivo: implicationsfor reciprocal cerebro-cerebellar structural connectivity in motor and non-motor areas. Sci Rep. 2017;7(1):12841.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Preziosa P, Rocca MA, Mesaros S, Pagani E, Drulovic J, Stosic-Opincal T, et al. Relationship between damage to the cerebellar peduncles and clinical disability in multiple sclerosis. Radiology. 2014;271(3):822–30.Google Scholar
  50. 50.
    Okamoto K, Tokiguchi S, Furusawa T, Ishikawa K, Quardery AF, Shinbo S, et al. MR features of diseases involving bilateral middle cerebellar peduncles. AJNR Am J Neuroradiol. 2003;24(10):1946–54.Google Scholar
  51. 51.
    Uchino A, Sawada A, Takase Y, Kudo S. Symmetrical lesions of the middle cerebellar peduncle: MR imaging and differential diagnosis. Magn Reson Med Sci. 2004;3(3):133–40.CrossRefPubMedGoogle Scholar
  52. 52.
    Ugawa Y, Uesaka Y, Terao Y, Hanajima R, Kanazawa I. Magnetic stimulation over the cerebellum in humans. Ann Neurol. 1995;37:703–13.CrossRefPubMedGoogle Scholar
  53. 53.
    Priori A, Ciocca M, Parazzini M, Vergari M, Ferrucci R. Transcranial cerebellar direct current stimulation and transcutaneous spinal cord direct current stimulation as innovative tools for neuroscientists. J Physiol. 2014;592(16):3345–69.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    De Smet HJ, Baillieux H, Wackenier P, De Praeter M, Engelborghs S, Paquier PF, et al. Long-term cognitive deficits following posterior fossa tumor resection: a neuropsychological and functional neuroimaging follow-up study. Neuropsychology. 2009;23:694–704.CrossRefPubMedGoogle Scholar
  55. 55.
    De Smet HJ, Mariën P. Posterior fossa syndrome in an adult patient following surgical evacuation of an intracerebellar haematoma. Cerebellum. 2012;11(2):587–92.CrossRefPubMedGoogle Scholar
  56. 56.
    Baillieux H, De Smet HJ, Dobbeleir A, Paquier PF, De Deyn PP, Mariën P. Cognitive and affective disturbances following focal cerebellar damage in adults: a neuropsychological and SPECT study. Cortex. 2010;46:869–79.CrossRefPubMedGoogle Scholar
  57. 57.
    Schutter DJ. The cerebello-hypothalamic-pituitary-adrenal axis dysregulation hypothesis in depressive disorder. Med Hypotheses. 2012;79(6):779–83.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Safiye Çavdar
    • 1
  • Merve Özgur
    • 1
  • Yasemin Kuvvet
    • 1
  • Husniye Hacıoğlu Bay
    • 2
  1. 1.Department of Anatomy, School of MedicineKoç UniversitySarıyer IstanbulTurkey
  2. 2.Department of Anatomy, School of MedicineMarmara UniversityIstanbulTurkey

Personalised recommendations