Advertisement

The Cerebellum

, Volume 18, Issue 1, pp 22–32 | Cite as

Far-infrared Radiation Improves Motor Dysfunction and Neuropathology in Spinocerebellar Ataxia Type 3 Mice

  • Shin-Wu Liu
  • Jui-Chih Chang
  • Sheng-Fei Chuang
  • Ko-Hung Liu
  • Wen-Ling Cheng
  • Hui-Ju Chang
  • Huei-Shin Chang
  • Ta-Tsung Lin
  • Ching-Liang Hsieh
  • Wei-Yong Lin
  • Mingli Hsieh
  • Shou-Jen KuoEmail author
  • Chin-San LiuEmail author
Original Paper

Abstract

Spinocerebellar ataxia type 3 (SCA3) is a polyglutamine neurodegenerative disease resulting from the misfolding and accumulation of a pathogenic protein, causing cerebellar dysfunction, and this disease currently has no effective treatments. Far-infrared radiation (FIR) has been found to protect the viability of SCA3 cells by preventing mutant ataxin-3 protein aggregation and promoting autophagy. However, this possible treatment still lacks in vivo evidence. This study assessed the effect of FIR therapy on SCA3 in vivo by using a mouse model over 28 weeks. Control mice carried a healthy wild-type ATXN3 allele that had a polyglutamine tract with 15 CAG repeats (15Q), whereas SCA3 transgenic mice possessed an allele with a pathological polyglutamine tract with expanded 84 CAG (84Q) repeats. The results showed that the 84Q SCA3 mice displayed impaired motor coordination, balance abilities, and gait performance, along with the associated loss of Purkinje cells in the cerebellum, compared with the normal 15Q controls; nevertheless, FIR treatment was sufficient to prevent those defects. FIR significantly improved performance in terms of maximal contact area, stride length, and base support in the forepaws, hindpaws, or both. Moreover, FIR treatment supported the survival of Purkinje cells in the cerebellum and promoted the autophagy, as reflected by the induction of autophagic markers, LC3II and Beclin-1, concomitant with the reduction of p62 and ataxin-3 accumulation in cerebellar Purkinje cells, which might partially contribute to the rescue mechanism. In summary, our results reveal that FIR confers therapeutic effects in an SCA3 transgenic animal model and therefore has considerable potential for future clinical use.

Keywords

Far-infrared radiation Spinocerebellar ataxia type 3 YAC transgenic mice Behavior Purkinje cells Autophagy 

Notes

Acknowledgments

We thank Dr. Chen Chang (Institute of Biomedical Sciences, Academia Sinica) for advice and assistance on preliminary experimental research.

Funding Information

This study was supported by the National Science Council (NSC 103-2314-B-371-005-; MOST 103-2320-B-371-001-).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

12311_2018_936_MOESM1_ESM.doc (74 kb)
ESM 1 (DOC 74 kb)

References

  1. 1.
    Sun YM, Lu C, Wu ZY. Spinocerebellar ataxia: relationship between phenotype and genotype—a review. Clin Genet. 2016;90:305–14.CrossRefGoogle Scholar
  2. 2.
    Taroni F, DiDonato S. Pathways to motor incoordination: the inherited ataxias. Nat Rev Neurosci. 2004;5:641–55.CrossRefGoogle Scholar
  3. 3.
    Bird TD. Hereditary ataxia overview. 2016.Google Scholar
  4. 4.
    do Carmo Costa M, Paulson HL. Toward understanding Machado–Joseph disease. Prog Neurobiol. 2012;97:239–57.CrossRefGoogle Scholar
  5. 5.
    Koeppen AH. The pathogenesis of spinocerebellar ataxia. Cerebellum. 2005;4:62–73.CrossRefGoogle Scholar
  6. 6.
    Seidel K, Siswanto S, Fredrich M, Bouzrou M, Brunt E, Leeuwen F, et al. Polyglutamine aggregation in Huntington’s disease and spinocerebellar ataxia type 3: similar mechanisms in aggregate formation. Neuropathol Appl Neurobiol. 2016;42:153–66.CrossRefGoogle Scholar
  7. 7.
    Li X, Liu H, Fischhaber PL, Tang T-S. Toward therapeutic targets for SCA3: insight into the role of Machado–Joseph disease protein ataxin-3 in misfolded proteins clearance. Prog Neurobiol. 2015;132:34–58.CrossRefGoogle Scholar
  8. 8.
    Fan H-C, Ho L-I, Chi C-S, Chen S-J, Peng G-S, Chan T-M, et al. Polyglutamine (PolyQ) diseases: genetics to treatments. Cell Transplant. 2014;23:441–58.CrossRefGoogle Scholar
  9. 9.
    Piccioni F, Pinton P, Simeoni S, Pozzi P, Fascio U, Vismara G, et al. Androgen receptor with elongated polyglutamine tract forms aggregates that alter axonal trafficking and mitochondrial distribution in motor neuronal processes. FASEB J. 2002;16:1418–20.CrossRefGoogle Scholar
  10. 10.
    Vatansever F, Hamblin MR. Far infrared radiation (FIR): its biological effects and medical applications. Photonics Lasers Med. 2012;1:255–66.Google Scholar
  11. 11.
    Shui S, Wang X, Chiang JY, Zheng L. Far-infrared therapy for cardiovascular, autoimmune, and other chronic health problems: a systematic review. Exp Biol Med. 2015;240:1257–65.CrossRefGoogle Scholar
  12. 12.
    Johnstone DM, Moro C, Stone J, Benabid A-L, Mitrofanis J. Turning on lights to stop neurodegeneration: the potential of near infrared light therapy in Alzheimer’s and Parkinson’s disease. Front Neurosci. 2016;9:500.CrossRefGoogle Scholar
  13. 13.
    Yu SY, Chiu JH, Yang SD, Hsu YC, Lui WY, Wu CW. Biological effect of far-infrared therapy on increasing skin microcirculation in rats. Photodermatol Photoimmunol Photomed. 2006;22:78–86.CrossRefGoogle Scholar
  14. 14.
    Ryotokuji K, Ishimaru K, Kihara K, Namiki Y, Hozumi N. Preliminary results of pinpoint plantar long-wavelength infrared light irradiation on blood glucose, insulin and stress hormones in patients with type 2 diabetes mellitus. Laser Ther. 2013;22:209–14.CrossRefGoogle Scholar
  15. 15.
    Wan Q, Yang S, Li L, Chu F. Effects of far infrared therapy on arteriovenous fistulas in hemodialysis patients: a meta-analysis. Ren Fail. 2017;39:613–22.CrossRefGoogle Scholar
  16. 16.
    Lin C-C, Liu X-M, Peyton K, Wang H, Yang W-C, Lin S-J, et al. Far infrared therapy inhibits vascular endothelial inflammation via the induction of heme oxygenase-1. Arterioscler Thromb Vasc Biol. 2008;28:739–45.CrossRefGoogle Scholar
  17. 17.
    Kihara T, Biro S, Imamura M, Yoshifuku S, Takasaki K, Ikeda Y, et al. Repeated sauna treatment improves vascular endothelial and cardiac function in patients with chronic heart failure. J Am Coll Cardiol. 2002;39:754–9.CrossRefGoogle Scholar
  18. 18.
    Chen C-H, Chen T-H, Wu M-Y, Chou T-C, Chen J-R, Wei M-J, et al. Far-infrared protects vascular endothelial cells from advanced glycation end products-induced injury via PLZF-mediated autophagy in diabetic mice. Sci Rep. 2017;7.Google Scholar
  19. 19.
    Toyokawa H, Matsui Y, Uhara J, Tsuchiya H, Teshima S, Nakanishi H, et al. Promotive effects of far-infrared ray on full-thickness skin wound healing in rats. Exp Biol Med. 2003;228:724–9.CrossRefGoogle Scholar
  20. 20.
    Chiu H-W, Chen C-H, Chang J-N, Chen C-H, Hsu Y-H. Far-infrared promotes burn wound healing by suppressing NLRP3 inflammasome caused by enhanced autophagy. J Mol Med. 2016;94:809–19.CrossRefGoogle Scholar
  21. 21.
    Bashar K, Healy D, Browne LD, Kheirelseid EA, Walsh MT, Clarke M, et al. Role of far infra-red therapy in dialysis arterio-venous fistula maturation and survival: systematic review and meta-analysis. PLoS One. 2014;9:e104931.CrossRefGoogle Scholar
  22. 22.
    Chen T-Y, Yang Y-C, Sha Y-N, Chou J-R, Liu B-S. Far-infrared therapy promotes nerve repair following end-to-end neurorrhaphy in rat models of sciatic nerve injury. Evid Based Complement Alternat Med. 2015;2015.Google Scholar
  23. 23.
    Ervolino F, Gazze R. Far infrared wavelength treatment for low back pain: evaluation of a non-invasive device. Work. 2016;53:157–62.CrossRefGoogle Scholar
  24. 24.
    Yu Z, Liu N, Zhao J, Li Y, McCarthy TJ, Tedford CE, et al. Near infrared radiation rescues mitochondrial dysfunction in cortical neurons after oxygen-glucose deprivation. Metab Brain Dis. 2015;30:491–6.CrossRefGoogle Scholar
  25. 25.
    Chang J-C, Wu S-L, Hoel F, Cheng Y-S, Liu K-H, Hsieh M, et al. Far-infrared radiation protects viability in a cell model of spinocerebellar ataxia by preventing polyQ protein accumulation and improving mitochondrial function. Sci Rep. 2016;6.Google Scholar
  26. 26.
    Budini M, Buratti E, Morselli E, Criollo A. Autophagy and its impact on neurodegenerative diseases: new roles for TDP-43 and C9orf72. Front Mol Neurosci. 2017;10.Google Scholar
  27. 27.
    Komatsu M, Waguri S, Chiba T, Murata S, Iwata J-i, Tanida I, et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature. 2006;441:880–4.CrossRefGoogle Scholar
  28. 28.
    Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature. 2006;441:885–9.CrossRefGoogle Scholar
  29. 29.
    Cemal CK, Carroll CJ, Lawrence L, Lowrie MB, Ruddle P, Al-Mahdawi S, et al. YAC transgenic mice carrying pathological alleles of the MJD1 locus exhibit a mild and slowly progressive cerebellar deficit. Hum Mol Genet. 2002;11:1075–94.CrossRefGoogle Scholar
  30. 30.
    Chen X, Tang T-S, Tu H, Nelson O, Pook M, Hammer R, et al. Deranged calcium signaling and neurodegeneration in spinocerebellar ataxia type 3. J Neurosci. 2008;28:12713–24.CrossRefGoogle Scholar
  31. 31.
    Shiotsuki H, Yoshimi K, Shimo Y, Funayama M, Takamatsu Y, Ikeda K, et al. A rotarod test for evaluation of motor skill learning. J Neurosci Methods. 2010;189:180–5.CrossRefGoogle Scholar
  32. 32.
    Luong TN, Carlisle HJ, Southwell A, Patterson PH. Assessment of motor balance and coordination in mice using the balance beam. J Visual Exp. 2011.Google Scholar
  33. 33.
    Wecker L, Engberg M, Philpot R, Lambert C, Kang C, Antilla J, et al. Neuronal nicotinic receptor agonists improve gait and balance in olivocerebellar ataxia. Neuropharmacology. 2013;73:75–86.CrossRefGoogle Scholar
  34. 34.
    Lampl Y, Zivin JA, Fisher M, Lew R, Welin L, Dahlof B, et al. Infrared laser therapy for ischemic stroke: a new treatment strategy. Stroke. 2007;38:1843–9.CrossRefGoogle Scholar
  35. 35.
    Onofre I, Mendonça N, Lopes S, Nobre R, De Melo JB, Carreira IM, et al. Fibroblasts of Machado Joseph disease patients reveal autophagy impairment. Sci Rep. 2016;6.Google Scholar
  36. 36.
    Kim M, Sandford E, Gatica D, Qiu Y, Liu X, Zheng Y, et al. Mutation in ATG5 reduces autophagy and leads to ataxia with developmental delay. elife. 2016;5:e12245.CrossRefGoogle Scholar
  37. 37.
    Cortes CJ, La Spada AR. Autophagy in polyglutamine disease: imposing order on disorder or contributing to the chaos? Mol Cell Neurosci. 2015;66:53–61.CrossRefGoogle Scholar
  38. 38.
    Ravikumar B, Vacher C, Berger Z, Davies JE, Luo S, Oroz LG, et al. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet. 2004;36:585–95.CrossRefGoogle Scholar
  39. 39.
    Menzies FM, Huebener J, Renna M, Bonin M, Riess O, Rubinsztein DC. Autophagy induction reduces mutant ataxin-3 levels and toxicity in a mouse model of spinocerebellar ataxia type 3. Brain. 2009;133:93–104.CrossRefGoogle Scholar
  40. 40.
    Nascimento-Ferreira I, Santos-Ferreira T, Sousa-Ferreira L, Auregan G, Onofre I, Alves S, et al. Overexpression of the autophagic beclin-1 protein clears mutant ataxin-3 and alleviates Machado–Joseph disease. Brain. 2011;134:1400–15.CrossRefGoogle Scholar
  41. 41.
    Komatsu M, Waguri S, Koike M, Sou Y-s, Ueno T, Hara T, et al. Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell. 2007;131:1149–63.CrossRefGoogle Scholar
  42. 42.
    Ramani B, Harris GM, Huang R, Seki T, Murphy GG, MdC C, et al. A knockin mouse model of spinocerebellar ataxia type 3 exhibits prominent aggregate pathology and aberrant splicing of the disease gene transcript. Hum Mol Genet. 2014;24:1211–24.CrossRefGoogle Scholar
  43. 43.
    Schilling K, Oberdick J, Rossi F, Baader SL. Besides Purkinje cells and granule neurons: an appraisal of the cell biology of the interneurons of the cerebellar cortex. Histochem Cell Biol. 2008;130:601–15.CrossRefGoogle Scholar
  44. 44.
    Xuan W, Vatansever F, Huang L, Hamblin MR. Transcranial low-level laser therapy enhances learning, memory, and neuroprogenitor cells after traumatic brain injury in mice. J Biomed Opt. 2014;19:108003.CrossRefGoogle Scholar
  45. 45.
    Ashkenazi A, Bento CF, Ricketts T, Vicinanza M, Siddiqi F, Pavel M, et al. Polyglutamine tracts regulate beclin 1-dependent autophagy. Nature. 2017;545:108–11.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Shin-Wu Liu
    • 1
  • Jui-Chih Chang
    • 1
  • Sheng-Fei Chuang
    • 1
  • Ko-Hung Liu
    • 1
  • Wen-Ling Cheng
    • 1
  • Hui-Ju Chang
    • 1
  • Huei-Shin Chang
    • 1
  • Ta-Tsung Lin
    • 1
  • Ching-Liang Hsieh
    • 2
    • 3
  • Wei-Yong Lin
    • 3
    • 4
  • Mingli Hsieh
    • 5
  • Shou-Jen Kuo
    • 6
    Email author
  • Chin-San Liu
    • 1
    • 3
    • 7
    Email author
  1. 1.Vascular and Genomic CenterChanghua Christian HospitalChanghuaTaiwan
  2. 2.Department of Chinese MedicineChina Medical University HospitalTaichungTaiwan
  3. 3.School of Chinese Medicine, Graduate Institute of Chinese Medicine, Graduate Institute of Integrated Medicine, College of Chinese Medicine, Research Center for Chinese Medicine and AcupunctureChina Medical UniversityTaichungTaiwan
  4. 4.Departments of Medical Research, Obstetrics and Gynecology, Dermatology, and UrologyChina Medical University HospitalTaichungTaiwan
  5. 5.Department of Life ScienceTunghai UniversityTaichungTaiwan
  6. 6.Department of SurgeryChanghua Christian HospitalChanghuaTaiwan
  7. 7.Department of NeurologyChanghua Christian HospitalChanghuaTaiwan

Personalised recommendations