Advertisement

Journal of Hematopathology

, Volume 11, Issue 1, pp 9–12 | Cite as

Isolated central nervous system post-transplant lymphoproliferative disorder in a pediatric patient: a case report with pathobiological perspective

  • Peng Cheng Han
  • Kendall S. Brewer
  • Adriana Olar
  • Kathryn G. Lindsey
Case Report
  • 84 Downloads

Abstract

Isolated central nervous system post-transplant lymphoproliferative disorder (ICNS-PTLD) in pediatric patients is a distinctly rare entity without accepted diagnostic criteria or treatment recommendations. We present a case of an 8-year-old male with a prior history of a kidney transplant who developed and ICNS-PTLD. We highlight the pathobiology and diagnostic features with a brief review of the literature on these rare cases. There is a complex interplay between CD30, Epstein Barr Virus and MYC as part of lymphocyte transformation leading to PTLD. In the appropriate clinical setting, CD30 and EBV positivity along with normal MYC expression are highly predictive of CNS-PTLD over a Primary CNS lymphoma. ICNS-PTLD has only been rarely reported in children. The faithful diagnosis is necessary for prognostication and to accrue data for treatment recommendations.

Keywords

PTLD Lymphoma Transplant Pediatric CD30 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Evens AM, Choquet S, Kroll-Desrosiers AR, Jagadeesh D, Smith SM, Morschhauser F, Leblond V, Roy R, Barton B, Gordon LI, Gandhi MK, Dierickx D, Schiff D, Habermann TM, Trappe R (2013) Primary CNS posttransplant lymphoproliferative disease (PTLD): an international report of 84 cases in the modern era. Am J Transp: Off J Am Soc Transp Am Soc Transp Surg 13(6):1512–1522.  https://doi.org/10.1111/ajt.12211 CrossRefGoogle Scholar
  2. 2.
    Cavaliere R, Petroni G, Lopes MB, Schiff D, International Primary Central Nervous System Lymphoma Collaborative G (2010) Primary central nervous system post-transplantation lymphoproliferative disorder: an international primary central nervous system lymphoma collaborative group report. Cancer 116(4):863–870.  https://doi.org/10.1002/cncr.24834 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Buell JF, Gross TG, Hanaway MJ, Trofe J, Roy-Chaudhury P, First MR, Woodle ES (2005) Posttransplant lymphoproliferative disorder: significance of central nervous system involvement. Transplant Proc 37(2):954–955.  https://doi.org/10.1016/j.transproceed.2004.12.130 CrossRefPubMedGoogle Scholar
  4. 4.
    Swerdlow SH CE, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J, Verdiman J.W. (Eds): (2008) WHO classification of tumours of haematopoietic and lymphoid tissue. IARC, LyonGoogle Scholar
  5. 5.
    Gheorghe G, Radu O, Milanovich S, Hamilton RL, Jaffe R, Southern JF, Ozolek JA (2013) athology of central nervous system posttransplant lymphoproliferative disorders: lessons from pediatric autopsies. Ped Dev Pathol: Off J Soc Ped Pathol Paed Pathol Soc 16(2):67–73.  https://doi.org/10.2350/12-01-1148-OA.1 CrossRefGoogle Scholar
  6. 6.
    Sundin A, Grzywacz BJ, Yohe S, Linden MA, Courville EL (2017) B-cell posttransplant lymphoproliferative disorder isolated to the central nervous system is Epstein-Barr virus positive and lacks p53 and Myc expression by immunohistochemistry. Hum Pathol 61:140–147.  https://doi.org/10.1016/j.humpath.2016.12.007 CrossRefPubMedGoogle Scholar
  7. 7.
    Falini B, Pileri S, Pizzolo G, Durkop H, Flenghi L, Stirpe F, Martelli MF, Stein H (1995) CD30 (Ki-1) molecule: a new cytokine receptor of the tumor necrosis factor receptor superfamily as a tool for diagnosis and immunotherapy. Blood 85(1):1–14PubMedGoogle Scholar
  8. 8.
    Pizzolo G, Vinante F, Nadali G, Krampera M, Morosato L, Chilosi M, Raiteri R, Sinicco A (1997) High serum level of soluble CD30 in acute primary HIV-1 infection. Clin Exp Immunol 108(2):251–253.  https://doi.org/10.1046/j.1365-2249.1997.d01-1005.x CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Younes A, Aggarwall BB (2003) Clinical implications of the tumor necrosis factor family in benign and malignant hematologic disorders. Cancer 98(3):458–467.  https://doi.org/10.1002/cncr.11524 CrossRefPubMedGoogle Scholar
  10. 10.
    Maes B, Anastasopoulou A, Kluin-Nelemans JC, Teodorovic I, Achten R, Carbone A, De Wolf-Peeters C, Group EL (2001) Among diffuse large B-cell lymphomas, T-cell-rich/histiocyte-rich BCL and CD30+ anaplastic B-cell subtypes exhibit distinct clinical features. Ann Oncol: Off J Eur Soc Med Oncol 12(6):853–858.  https://doi.org/10.1023/A:1011195708834 CrossRefGoogle Scholar
  11. 11.
    Allday MJ (2009) How does Epstein-Barr virus (EBV) complement the activation of Myc in the pathogenesis of Burkitt’s lymphoma? Semin Cancer Biol 19(6):366–376.  https://doi.org/10.1016/j.semcancer.2009.07.007 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Gires O, Kohlhuber F, Kilger E, Baumann M, Kieser A, Kaiser C, Zeidler R, Scheffer B, Ueffing M, Hammerschmidt W (1999) Latent membrane protein 1 of Epstein-Barr virus interacts with JAK3 and activates STAT proteins. EMBO J 18(11):3064–3073.  https://doi.org/10.1093/emboj/18.11.3064 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    McMahon SB (2014) MYC and the control of apoptosis. Cold Spring Harbor Perspect Med 4(7):a014407.  https://doi.org/10.1101/cshperspect.a014407 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Peng Cheng Han
    • 1
  • Kendall S. Brewer
    • 1
  • Adriana Olar
    • 1
  • Kathryn G. Lindsey
    • 1
    • 2
  1. 1.Medical University of South CarolinaCharlestonUSA
  2. 2.CharlestonUSA

Personalised recommendations