Advertisement

Kinins in Glioblastoma Microenvironment

  • Mona N. Oliveira
  • Barbara BreznikEmail author
  • Micheli M. Pillat
  • Ricardo L. Pereira
  • Henning Ulrich
  • Tamara T. Lah
Original Article
  • 1 Downloads

Abstract

Tumour progression involves interactions among various cancer cell clones, including the cancer stem cell subpopulation and exogenous cellular components, termed cancer stromal cells. The latter include a plethora of tumour infiltrating immunocompetent cells, among which are also immuno-modulatory mesenchymal stem cells, which by vigorous migration to growing tumours and susequent transdifferentiation into various types of tumour-residing stromal cells, may either inhibit or support tumour progression. In the light of the scarce therapeutic options existing for the most malignant brain tumour glioblastoma, mesenchymal stem cells may represent a promising novel tool for cell therapy, e.g. drug delivery vectors. Here, we review the increasing number of reports on mutual interactions between mesenchymal stem cells and glioblastoma cells in their microenvironment. We particularly point out two novel aspects: the different responses of cancer cells to their microenvironmental cues, and to the signalling by kinin receptors that complement the immuno-modulating cytokine-signalling networks. Inflammatory glioblastoma microenvironment is characterised by increasing expression of kinin receptors during progressive glioma malignancy, thus making kinin signalling and kinins themselves rather important in this context. In general, their role in tumour microenvironment has not been explored so far. In addition, kinins also regulate blood brain barrier-related drug transfer as well as brain tumour angiogenesis. These studies support the on-going research on kinin antagonists as candidates in the development of anti-invasive agents for adjuvant glioblastoma therapy.

Keywords

Co-culture Glioma Kinin receptors Mesenchymal stem cells Microenvironment Tumour heterogeneity 

Notes

Acknowledgements

We acknowledge the support by an ARRS Programme P1-0245 awarded to TTL in Slovenia and the National Counsel of Technological and Scientific Development granted to HU with a Visiting Professorship (CNPq Linha 2 – Bolsa Pesquisador Visitante Especial, Edital No 61/2011) awarded to TTL in Brazil. HU further acknowledges grant support from the São Paulo Research Foundation (FAPESP proj. No. 2012/50880-4). BB was a PhD Fellow of the Jožef Stefan International Postgraduate School, Ljubljana, Slovenia. MNO was a double PhD fellow at the Biochemistry Department of the University of São Paulo-Brazil and Fellow of the Jožef Stefan International Postgraduate School, Ljubljana, Slovenia, with a fellowship from National Counsel of Technological and Scientific Development (CNPq). RLP is a graduate student at the Biochemistry Department of the University of São Paulo, with a fellowship for his PhD thesis granted by the Coordination for the Improvement of Higher Education Personnel (CAPES), Brazil. We thank Dr. Miloš Vittori for images of glioblastoma tumours in zebrafish embryos.

Author Contributions

BB and MNO share first authorship, TTL and HU share correspondence.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P, Ellison DW (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131:803–820.  https://doi.org/10.1007/s00401-016-1545-1 CrossRefPubMedGoogle Scholar
  2. 2.
    Philips A, Henshaw DL, Lamburn G, O’Carroll MJ (2018) Brain tumours: rise in glioblastoma multiforme incidence in England 1995-2015 suggests an adverse environmental or lifestyle factor. J Environ Public Health 2018:7910754–7910710.  https://doi.org/10.1155/2018/7910754 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Bao S, Wu Q, McLendon RE et al (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444:756–760.  https://doi.org/10.1038/nature05236 CrossRefPubMedGoogle Scholar
  4. 4.
    Wood MD, Reis GF, Reuss DE, Phillips JJ (2016) Protein analysis of glioblastoma primary and posttreatment pairs suggests a mesenchymal shift at recurrence. J Neuropathol Exp Neurol 75:925–935.  https://doi.org/10.1093/jnen/nlw068 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Wang Q, Hu X, Muller F et al (2017) Tumor evolution of glioma intrinsic gene expression subtype associates with immunological changes in the microenvironment. Cancer Cell 32:42–56.  https://doi.org/10.1016/j.ccell.2017.06.003 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Lah TT, Beatriz M, Alonso D, Van Noorden CJ (2006) Antiprotease therapy in cancer : hot or not? 6:257–279.  https://doi.org/10.1517/14712598.6.3.257
  7. 7.
    Gole B, Huszthy PC, Popović M, Jeruc J, Ardebili YS, Bjerkvig R, Lah TT (2012) The regulation of cysteine cathepsins and cystatins in human gliomas. Int J Cancer 131:1779–1789.  https://doi.org/10.1002/ijc.27453 CrossRefPubMedGoogle Scholar
  8. 8.
    Cuddapah VA, Robel S, Watkins S, Sontheimer H (2014) A neurocentric perspective on glioma invasion. Nat Rev Neurosci 15:455–465.  https://doi.org/10.1038/nrn3765 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Verhaak RGW, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, Miller CR, Ding L, Golub T, Mesirov JP, Alexe G, Lawrence M, O'Kelly M, Tamayo P, Weir BA, Gabriel S, Winckler W, Gupta S, Jakkula L, Feiler HS, Hodgson JG, James CD, Sarkaria JN, Brennan C, Kahn A, Spellman PT, Wilson RK, Speed TP, Gray JW, Meyerson M, Getz G, Perou CM, Hayes DN (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17:98–110.  https://doi.org/10.1016/j.ccr.2009.12.020 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Ceccarelli M, Barthel FP, Malta TM, Sabedot TS, Salama SR, Murray BA, Morozova O, Newton Y, Radenbaugh A, Pagnotta SM, Anjum S, Wang J, Manyam G, Zoppoli P, Ling S, Rao AA, Grifford M, Cherniack AD, Zhang H, Poisson L, Carlotti CG Jr, Tirapelli DPC, Rao A, Mikkelsen T, Lau CC, Yung WKA, Rabadan R, Huse J, Brat DJ, Lehman NL, Barnholtz-Sloan JS, Zheng S, Hess K, Rao G, Meyerson M, Beroukhim R, Cooper L, Akbani R, Wrensch M, Haussler D, Aldape KD, Laird PW, Gutmann DH, Noushmehr H, Iavarone A, Verhaak RGW, Anjum S, Arachchi H, Auman JT, Balasundaram M, Balu S, Barnett G, Baylin S, Bell S, Benz C, Bir N, Black KL, Bodenheimer T, Boice L, Bootwalla MS, Bowen J, Bristow CA, Butterfield YSN, Chen QR, Chin L, Cho J, Chuah E, Chudamani S, Coetzee SG, Cohen ML, Colman H, Couce M, D’Angelo F, Davidsen T, Davis A, Demchok JA, Devine K, Ding L, Duell R, Elder JB, Eschbacher JM, Fehrenbach A, Ferguson M, Frazer S, Fuller G, Fulop J, Gabriel SB, Garofano L, Gastier-Foster JM, Gehlenborg N, Gerken M, Getz G, Giannini C, Gibson WJ, Hadjipanayis A, Hayes DN, Heiman DI, Hermes B, Hilty J, Hoadley KA, Hoyle AP, Huang M, Jefferys SR, Jones CD, Jones SJM, Ju Z, Kastl A, Kendler A, Kim J, Kucherlapati R, Lai PH, Lawrence MS, Lee S, Leraas KM, Lichtenberg TM, Lin P, Liu Y, Liu J, Ljubimova JY, Lu Y, Ma Y, Maglinte DT, Mahadeshwar HS, Marra MA, McGraw M, McPherson C, Meng S, Mieczkowski PA, Miller CR, Mills GB, Moore RA, Mose LE, Mungall AJ, Naresh R, Naska T, Neder L, Noble MS, Noss A, O’Neill BP, Ostrom QT, Palmer C, Pantazi A, Parfenov M, Park PJ, Parker JS, Perou CM, Pierson CR, Pihl T, Protopopov A, Radenbaugh A, Ramirez NC, Rathmell WK, Ren X, Roach J, Robertson AG, Saksena G, Schein JE, Schumacher SE, Seidman J, Senecal K, Seth S, Shen H, Shi Y, Shih J, Shimmel K, Sicotte H, Sifri S, Silva T, Simons JV, Singh R, Skelly T, Sloan AE, Sofia HJ, Soloway MG, Song X, Sougnez C, Souza C, Staugaitis SM, Sun H, Sun C, Tan D, Tang J, Tang Y, Thorne L, Trevisan FA, Triche T, van den Berg DJ, Veluvolu U, Voet D, Wan Y, Wang Z, Warnick R, Weinstein JN, Weisenberger DJ, Wilkerson MD, Williams F, Wise L, Wolinsky Y, Wu J, Xu AW, Yang L, Yang L, Zack TI, Zenklusen JC, Zhang J, Zhang W, Zhang J, Zmuda E (2016) Molecular profiling reveals biologically discrete subsets and pathways of progression in diffuse glioma. Cell 164:550–563.  https://doi.org/10.1016/j.cell.2015.12.028 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Patel AP, Tirosh I, Trombetta JJ et al (2014) Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344(80):1396–1401.  https://doi.org/10.1126/science.1254257 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Sottoriva A, Spiteri I, Piccirillo SGM, Touloumis A, Collins VP, Marioni JC, Curtis C, Watts C, Tavare S (2013) Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. Proc Natl Acad Sci 110:4009–4014.  https://doi.org/10.1073/pnas.1219747110 CrossRefPubMedGoogle Scholar
  13. 13.
    Phillips HS, Kharbanda S, Chen R, Forrest WF, Soriano RH, Wu TD, Misra A, Nigro JM, Colman H, Soroceanu L, Williams PM, Modrusan Z, Feuerstein BG, Aldape K (2006) Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9:157–173.  https://doi.org/10.1016/j.ccr.2006.02.019 CrossRefPubMedGoogle Scholar
  14. 14.
    Felsberg J, Hentschel B, Kaulich K, Gramatzki D, Zacher A, Malzkorn B, Kamp M, Sabel M, Simon M, Westphal M, Schackert G, Tonn JC, Pietsch T, von Deimling A, Loeffler M, Reifenberger G, Weller M (2017) Epidermal growth factor receptor variant III (EGFRvIII) positivity in EGFR-amplified glioblastomas: prognostic role and comparison between primary and recurrent tumors. Clin Cancer Res 23:6846–6855.  https://doi.org/10.1158/1078-0432.CCR-17-0890 CrossRefPubMedGoogle Scholar
  15. 15.
    Molenaar RJ, Verbaan D, Lamba S, Zanon C, Jeuken JWM, Boots-Sprenger SHE, Wesseling P, Hulsebos TJM, Troost D, van Tilborg AA, Leenstra S, Vandertop WP, Bardelli A, van Noorden CJF, Bleeker FE (2014) The combination of IDH1 mutations and MGMT methylation status predicts survival in glioblastoma better than either IDH1 or MGMT alone. Neuro-Oncology 16:1263–1273.  https://doi.org/10.1093/neuonc/nou005 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Molenaar RJ, Maciejewski JP, Wilmink JW, van Noorden CJF (2018) Wild-type and mutated IDH1/2 enzymes and therapy responses. Oncogene 37:1949–1960.  https://doi.org/10.1038/s41388-017-0077-z CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Van Meir EG, Hadjipanayis CG, Norden AD et al (2010) Exciting new advances in neuro-oncology: the avenue to a cure for malignant glioma. CA Cancer J Clin 60:166–193.  https://doi.org/10.3322/caac.20069 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Lee HY, Hong IS (2017) Double-edged sword of mesenchymal stem cells: Cancer-promoting versus therapeutic potential. Cancer Sci 108:1939–1946.  https://doi.org/10.1111/cas.13334 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Hegi ME, Diserens A-C, Gorlia T, Hamou MF, de Tribolet N, Weller M, Kros JM, Hainfellner JA, Mason W, Mariani L, Bromberg JEC, Hau P, Mirimanoff RO, Cairncross JG, Janzer RC, Stupp R (2005) MGMT gene silencing and benefit from Temozolomide in glioblastoma. N Engl J Med 352:997–1003.  https://doi.org/10.1056/NEJMoa043331 CrossRefPubMedGoogle Scholar
  20. 20.
    Hossain A, Gumin J, Gao F, Figueroa J, Shinojima N, Takezaki T, Priebe W, Villarreal D, Kang SG, Joyce C, Sulman E, Wang Q, Marini FC, Andreeff M, Colman H, Lang FF (2015) Mesenchymal stem cells isolated from human gliomas increase proliferation and maintain Stemness of glioma stem cells through the IL-6/gp130/STAT3 pathway. Stem Cells 33:2400–2415.  https://doi.org/10.1002/stem.2053 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Oliveira MN, Pillat MM, Motaln H, Ulrich H, Lah TT (2018) Kinin-B1 receptor stimulation promotes invasion and is involved in cell-cell interaction of co-cultured glioblastoma and mesenchymal stem cells. Sci Rep 8:1299.  https://doi.org/10.1038/s41598-018-19359-1 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Appaix F, Nissou M-F, van der Sanden B et al (2014) Brain mesenchymal stem cells: the other stem cells of the brain? World J Stem Cells 6:134–143.  https://doi.org/10.4252/wjsc.v6.i2.134 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Patil V, Pal J, Somasundaram K (2015) Elucidating the cancer-specific genetic alteration spectrum of glioblastoma derived cell lines from whole exome and RNA sequencing. Oncotarget 6:43452–71. Doi:  https://doi.org/10.18632/oncotarget.6171
  24. 24.
    van Lith SA, Navis AC, Lenting K et al (2016) Identification of a novel inactivating mutation in Isocitrate dehydrogenase 1 (IDH1-R314C) in a high grade astrocytoma. Sci Rep 6:30486.  https://doi.org/10.1038/srep30486 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Motaln H, Gruden K, Hren M, Schichor C, Primon M, Rotter A, Lah TT (2012) Human mesenchymal stem cells exploit the immune response mediating chemokines to impact the phenotype of glioblastoma. Cell Transplant 21:1529–1545.  https://doi.org/10.3727/096368912X640547 CrossRefPubMedGoogle Scholar
  26. 26.
    Breznik B, Motaln H, Vittori M, et al (2017) Mesenchymal stem cells differentially affect the invasion of distinct glioblastoma cell lines. Oncotarget 8:25482–25499. Doi:  https://doi.org/10.18632/oncotarget.16041
  27. 27.
    Motaln H, Koren A, Gruden K et al (2015) Heterogeneous glioblastoma cell cross-talk promotes phenotype alterations and enhanced drug resistance. Oncotarget 6:40998–41017.  https://doi.org/10.18632/oncotarget.5701 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Behnan J, Stangeland B, Hosainey SAM, Joel M, Olsen TK, Micci F, Glover JC, Isakson P, Brinchmann JE (2017) Differential propagation of stroma and cancer stem cells dictates tumorigenesis and multipotency. Oncogene 36:570–584.  https://doi.org/10.1038/onc.2016.230 CrossRefPubMedGoogle Scholar
  29. 29.
    Singh SK, Clarke ID, Terasaki M et al (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63:5821–5828PubMedGoogle Scholar
  30. 30.
    Lathia JD, Mack SC, Mulkearns-Hubert EE, Valentim CLL, Rich JN (2015) Cancer stem cells in glioblastoma. Genes Dev 29:1203–1217.  https://doi.org/10.1101/gad.261982.115 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Teng YD, Wang L, Kabatas S, Ulrich H, Zafonte RD (2018) Cancer stem cells or tumor survival cells? Stem Cells Dev 27:1466–1478.  https://doi.org/10.1089/scd.2018.0129 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Teng J, Carla da Hora C, Kantar RS, Nakano I, Wakimoto H, Batchelor TT, Chiocca EA, Badr CE, Tannous BA (2017) Dissecting inherent intratumor heterogeneity in patient-derived glioblastoma culture models. Neuro-Oncology 19:820–832.  https://doi.org/10.1093/neuonc/now253 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Ricklefs F, Mineo M, Rooj AK, Nakano I, Charest A, Weissleder R, Breakefield XO, Chiocca EA, Godlewski J, Bronisz A (2016) Extracellular vesicles from high-grade glioma exchange diverse pro-oncogenic signals that maintain Intratumoral heterogeneity. Cancer Res 76:2876–2881.  https://doi.org/10.1158/0008-5472.CAN-15-3432 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Liu T, Xu H, Huang M, Ma W, Saxena D, Lustig RA, Alonso-Basanta M, Zhang Z, O Rourke DM, Zhang L, Gong Y, Kao GD, Dorsey JF, Fan Y (2018) Circulating glioma cells exhibit stem cell-like properties. Cancer Res 78:6632–6642.  https://doi.org/10.1158/0008-5472.CAN-18-0650 CrossRefPubMedGoogle Scholar
  35. 35.
    Bhat KPL, Balasubramaniyan V, Vaillant B, Ezhilarasan R, Hummelink K, Hollingsworth F, Wani K, Heathcock L, James JD, Goodman LD, Conroy S, Long L, Lelic N, Wang S, Gumin J, Raj D, Kodama Y, Raghunathan A, Olar A, Joshi K, Pelloski CE, Heimberger A, Kim SH, Cahill DP, Rao G, den Dunnen WFA, Boddeke HWGM, Phillips HS, Nakano I, Lang FF, Colman H, Sulman EP, Aldape K (2013) Mesenchymal differentiation mediated by NF-κB promotes radiation resistance in glioblastoma. Cancer Cell 24:331–346.  https://doi.org/10.1016/j.ccr.2013.08.001 CrossRefPubMedGoogle Scholar
  36. 36.
    Mohr M, Zänker KS, Dittmar T (2015) Cancer (stem) cell differentiation: an inherent or acquired property? Med Hypotheses 85:1012–1018.  https://doi.org/10.1016/j.mehy.2015.08.017 CrossRefPubMedGoogle Scholar
  37. 37.
    Wood MD, Reis GF, Reuss DE, Phillips JJ (2016) Protein analysis of glioblastoma primary and posttreatment pairs suggests a mesenchymal shift at recurrence. J Neuropathol Exp Neurol 75:925–935.  https://doi.org/10.1093/jnen/nlw068 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Iwadate Y (2016) Epithelial-mesenchymal transition in glioblastoma progression. Oncol Lett 11:1615–1620.  https://doi.org/10.3892/ol.2016.4113 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Qazi MA, Vora P, Venugopal C, Sidhu SS, Moffat J, Swanton C, Singh SK (2017) Intratumoral heterogeneity: pathways to treatment resistance and relapse in human glioblastoma. Ann Oncol 28:1448–1456.  https://doi.org/10.1093/annonc/mdx169 CrossRefPubMedGoogle Scholar
  40. 40.
    Podergajs N, Motaln H, Rajčević U et al (2016) Transmembrane protein CD9 is glioblastoma biomarker, relevant for maintenance of glioblastoma stem cells. Oncotarget 7:593–609.  https://doi.org/10.18632/oncotarget.5477 CrossRefPubMedGoogle Scholar
  41. 41.
    Shi Y, Zhou W, Cheng L, Chen C, Huang Z, Fang X, Wu Q, He Z, Xu S, Lathia JD, Ping Y, Rich JN, Bian XW, Bao S (2017) Tetraspanin CD9 stabilizes gp130 by preventing its ubiquitin-dependent lysosomal degradation to promote STAT3 activation in glioma stem cells. Cell Death Differ 24:167–180.  https://doi.org/10.1038/cdd.2016.110 CrossRefPubMedGoogle Scholar
  42. 42.
    Tavazoie M, Van der Veken L, Silva-Vargas V et al (2008) A specialized vascular niche for adult neural stem cells. Cell Stem Cell 3:279–288.  https://doi.org/10.1016/j.stem.2008.07.025 CrossRefPubMedGoogle Scholar
  43. 43.
    Hira VVV, Verbovšek U, Breznik B, Srdič M, Novinec M, Kakar H, Wormer J, der Swaan BV, Lenarčič B, Juliano L, Mehta S, van Noorden CJF, Lah TT (2017) Cathepsin K cleavage of SDF-1α inhibits its chemotactic activity towards glioblastoma stem-like cells. Biochim Biophys Acta - Mol Cell Res 1864:594–603.  https://doi.org/10.1016/j.bbamcr.2016.12.021 CrossRefPubMedGoogle Scholar
  44. 44.
    Aderetti DA, Hira VVV, Molenaar RJ, van Noorden CJF (2018) The hypoxic peri-arteriolar glioma stem cell niche, an integrated concept of five types of niches in human glioblastoma. Biochim Biophys Acta - Rev Cancer 1869:346–354.  https://doi.org/10.1016/j.bbcan.2018.04.008 CrossRefPubMedGoogle Scholar
  45. 45.
    Hira VVV, Ploegmakers KJ, Grevers F, Verbovšek U, Silvestre-Roig C, Aronica E, Tigchelaar W, Turnšek TL, Molenaar RJ, van Noorden CJF (2015) CD133 + and nestin + glioma stem-like cells reside around CD31 + arterioles in niches that express SDF-1α, CXCR4, Osteopontin and Cathepsin K. J Histochem Cytochem 63:481–493.  https://doi.org/10.1369/0022155415581689 CrossRefPubMedGoogle Scholar
  46. 46.
    Verbovšek U, Van Noorden CJF, Lah TT (2015) Complexity of cancer protease biology: Cathepsin K expression and function in cancer progression. Semin Cancer Biol 35:71–84.  https://doi.org/10.1016/j.semcancer.2015.08.010 CrossRefPubMedGoogle Scholar
  47. 47.
    Edalat L, Stegen B, Klumpp L, et al (2016) BK K+ channel blockade inhibits radiation-induced migration/brain infiltration of glioblastoma cells. Oncotarget 7:14259–78. Doi:  https://doi.org/10.18632/oncotarget.7423
  48. 48.
    Steinbichler TB, Dudás J, Skvortsov S, Ganswindt U, Riechelmann H, Skvortsova II (2018) Therapy resistance mediated by cancer stem cells. Semin Cancer Biol 53:156–167.  https://doi.org/10.1016/j.semcancer.2018.11.006 CrossRefPubMedGoogle Scholar
  49. 49.
    Zomer A, Van Rheenen J (2016) Implications of extracellular vesicle transfer on cellular heterogeneity in cancer: what are the potential clinical ramifications? Cancer Res 76:2071–2075.  https://doi.org/10.1158/0008-5472.CAN-15-2804 CrossRefPubMedGoogle Scholar
  50. 50.
    Hannafon BN, Ding WQ (2013) Intercellular communication by exosome-derived microRNAs in cancer. Int J Mol Sci 14:14240–14269CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Skog J, Wurdinger T, Van Rijn S et al (2008) Glioblastoma microvesicles transport RNA and protein that promote tumor growth and provide diagnostic biomarkers Johan. Nat Cell Biol 10:1470–1476.  https://doi.org/10.1038/ncb1800.Glioblastoma CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Howcroft TK, Zhang HG, Dhodapkar M, Mohla S (2011) Vesicle transfer and cell fusion: emerging concepts of cell-cell communication in the tumor microenvironment. Cancer Biol Ther 12:159–164.  https://doi.org/10.4161/cbt.12.3.17032 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Spinelli C, Montermini L, Meehan B, Brisson AR, Tan S, Choi D, Nakano I, Rak J (2018) Molecular subtypes and differentiation programmes of glioma stem cells as determinants of extracellular vesicle profiles and endothelial cell-stimulating activities. J Extracell vesicles 7:1490144.  https://doi.org/10.1080/20013078.2018.1490144 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Stuckey DW, Shah K (2014) Stem cell-based therapies for cancer treatment: separating hope from hype. Nat Rev Cancer 14:683–691.  https://doi.org/10.1038/nrc3798 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Torsvik A, Røsland GV, Svendsen A et al (2010) Spontaneous malignant transformation of human mesenchymal stem cells reflects cross-contamination: putting the research field on track - letter. Cancer Res 70:6393–6396.  https://doi.org/10.1158/0008-5472.CAN-10-1305 CrossRefPubMedGoogle Scholar
  56. 56.
    Castro-Manrreza ME, Montesinos JJ (2015) Immunoregulation by mesenchymal stem cells: biological aspects and clinical applications. J Immunol Res 2015:394917–394920.  https://doi.org/10.1155/2015/394917 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Baglio SR, Pegtel DM, Baldini N (2012) Mesenchymal stem cell secreted vesicles provide novel opportunities in (stem) cell-free therapy. Front Physiol 3:359.  https://doi.org/10.3389/fphys.2012.00359 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Lee HK, Kim HS, Kim JS, Kim YG, Park KH, Lee JH, Kim KH, Chang IY, Bae SC, Kim Y, Hong JT, Kehrl JH, Han SB (2017) CCL2 deficient mesenchymal stem cells fail to establish long-lasting contact with T cells and no longer ameliorate lupus symptoms. Sci Rep 7:41258.  https://doi.org/10.1038/srep41258 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Shi S, Zhang M, Guo R, Miao Y, Li B (2019) Bone marrow–derived mesenchymal stem cell–mediated dual-gene therapy for glioblastoma. Hum Gene Ther 30:106–117.  https://doi.org/10.1089/hum.2018.092 CrossRefPubMedGoogle Scholar
  60. 60.
    Papaccio F, Paino F, Regad T, Papaccio G, Desiderio V, Tirino V (2017) Concise review: Cancer cells, Cancer stem cells, and mesenchymal stem cells: influence in Cancer development. Stem Cells Transl Med 6:2115–2125.  https://doi.org/10.1002/sctm.17-0138 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Rodini CO, da Silva PBG, Assoni AF et al (2018) Mesenchymal stem cells enhance tumorigenic properties of human glioblastoma through independent cell-cell communication mechanisms. Oncotarget 9:24766–24777.  https://doi.org/10.18632/oncotarget.25346 CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Bryukhovetskiy I, Shevchenko V (2016) Molecular mechanisms of the effect of TGF-β1 on U87 human glioblastoma cells. Oncol Lett 12:1581–1590.  https://doi.org/10.3892/ol.2016.4756 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Milkina E, Ponomarenko A, Korneyko M, Lyakhova I, Zayats Y, Zaitsev S, Mischenko P, Eliseikina M, Khotimchenko Y, Shevchenko V, Sharma H, Bryukhovetskiy I (2018) Interaction of hematopoietic CD34+ CD45+ stem cells and cancer cells stimulated by TGF-β1 in a model of glioblastoma in vitro. Oncol Rep 40:2595–2607.  https://doi.org/10.3892/or.2018.6671 CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Barcellos-de-Souza P, Gori V, Bambi F, Chiarugi P (2013) Tumor microenvironment: bone marrow-mesenchymal stem cells as key players. Biochim Biophys Acta - Rev Cancer 1836:321–335.  https://doi.org/10.1016/j.bbcan.2013.10.004 CrossRefGoogle Scholar
  65. 65.
    Yi D, Xiang W, Zhang Q, Cen Y, Su Q, Zhang F, Lu Y, Zhao H, Fu P (2018) Human glioblastoma-derived mesenchymal stem cell to Pericytes transition and Angiogenic capacity in glioblastoma microenvironment. Cell Physiol Biochem 46:279–290.  https://doi.org/10.1159/000488429 CrossRefPubMedGoogle Scholar
  66. 66.
    Behnan J, Isakson P, Joel M, Cilio C, Langmoen IA, Vik-Mo EO, Badn W (2014) Recruited brain tumor-derived mesenchymal stem cells contribute to brain tumor progression. Stem Cells 32:1110–1123.  https://doi.org/10.1002/stem.1614 CrossRefPubMedGoogle Scholar
  67. 67.
    Bajetto A, Pattarozzi A, Corsaro A, Barbieri F, Daga A, Bosio A, Gatti M, Pisaturo V, Sirito R, Florio T (2017) Different effects of human umbilical cord mesenchymal stem cells on glioblastoma stem cells by direct cell interaction or via released soluble factors. Front Cell Neurosci 11:312.  https://doi.org/10.3389/fncel.2017.00312 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Pavon LF, Sibov TT, de Souza AV, da Cruz EF, Malheiros SMF, Cabral FR, de Souza JG, Boufleur P, de Oliveira DM, de Toledo SRC, Marti LC, Malheiros JM, Paiva FF, Tannús A, de Oliveira SM, Chudzinski-Tavassi AM, de Paiva Neto MA, Cavalheiro S (2018) Tropism of mesenchymal stem cell toward CD133+ stem cell of glioblastoma in vitro and promote tumor proliferation in vivo. Stem Cell Res Ther 9:310.  https://doi.org/10.1186/s13287-018-1049-0 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Motaln H, Turnsek TL (2015) Cytokines play a key role in communication between mesenchymal stem cells and brain cancer cells. Protein Pept Lett 22:322–331CrossRefPubMedGoogle Scholar
  70. 70.
    Kološa K, Motaln H, Herold-Mende C, Koršič M, Lah TT (2015) Paracrine effects of mesenchymal stem cells induce senescence and differentiation of glioblastoma stem-like cells. Cell Transplant 24:631–644.  https://doi.org/10.3727/096368915X687787 CrossRefPubMedGoogle Scholar
  71. 71.
    Figueroa J, Phillips LM, Shahar T, Hossain A, Gumin J, Kim H, Bean AJ, Calin GA, Fueyo J, Walters ET, Kalluri R, Verhaak RG, Lang FF (2017) Exosomes from glioma-associated mesenchymal stem cells increase the Tumorigenicity of glioma stem-like cells via transfer of miR-1587. Cancer Res 77:5808–5819.  https://doi.org/10.1158/0008-5472.CAN-16-2524 CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Nakamizo A, Marini F, Amano T, Khan A, Studeny M, Gumin J, Chen J, Hentschel S, Vecil G, Dembinski J, Andreeff M, Lang FF (2005) Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Cancer Res 65:3307–3318.  https://doi.org/10.1158/0008-5472.CAN-04-1874 CrossRefPubMedGoogle Scholar
  73. 73.
    Klopp AH, Gupta A, Spaeth E, Andreeff M, Marini F III (2011) Concise review: dissecting a discrepancy in the literature: do mesenchymal stem cells support or suppress tumor growth? Stem Cells 29:11–19.  https://doi.org/10.1002/stem.559 CrossRefPubMedGoogle Scholar
  74. 74.
    Del Fattore A, Luciano R, Saracino R et al (2015) Differential effects of extracellular vesicles secreted by mesenchymal stem cells from different sources on glioblastoma cells. Expert Opin Biol Ther 15:495–504.  https://doi.org/10.1517/14712598.2015.997706 CrossRefPubMedGoogle Scholar
  75. 75.
    Schichor C, Albrecht V, Korte B, Buchner A, Riesenberg R, Mysliwietz J, Paron I, Motaln H, Turnšek TL, Jürchott K, Selbig J, Tonn JC (2012) Mesenchymal stem cells and glioma cells form a structural as well as a functional syncytium in vitro. Exp Neurol 234:208–219.  https://doi.org/10.1016/j.expneurol.2011.12.033 CrossRefPubMedGoogle Scholar
  76. 76.
    Dasari VR, Kaur K, Velpula KK, Gujrati M, Fassett D, Klopfenstein JD, Dinh DH, Rao JS (2010) Upregulation of PTEN in glioma cells by cord blood mesenchymal stem cells inhibits migration via downregulation of the PI3K/Akt pathway. PLoS One 5:e10350.  https://doi.org/10.1371/journal.pone.0010350 CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Dasari VR, Velpula KK, Kaur K, Fassett D, Klopfenstein JD, Dinh DH, Gujrati M, Rao JS (2010) Cord blood stem cell-mediated induction of apoptosis in glioma downregulates X-linked inhibitor of apoptosis protein (XIAP). PLoS One 5:e11813.  https://doi.org/10.1371/journal.pone.0011813 CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Vittori M, Motaln H, Turnšek TL (2015) The study of glioma by xenotransplantation in zebrafish early life stages. J Histochem Cytochem 63:749–761.  https://doi.org/10.1369/0022155415595670 CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Gomes ED, Vieira de Castro J, Costa BM, Salgado AJ (2018) The impact of mesenchymal stem cells and their secretome as a treatment for gliomas. Biochimie 155:59–66.  https://doi.org/10.1016/j.biochi.2018.07.008 CrossRefPubMedGoogle Scholar
  80. 80.
    e Silva MR, Beraldo WT, Rosenfeld G (1949) Bradykinin, a hypotensive and smooth muscle stimulating factor released from plasma globulin by snake venoms and by trypsin. Am J Physiol Content 156:261–273. doi:  https://doi.org/10.1152/ajplegacy.1949.156.2.261
  81. 81.
    Negraes PD, Trujillo CA, Pillat MM, Teng YD, Ulrich H (2015) Roles of Kinins in the nervous system. Cell Transplant 24:613–623.  https://doi.org/10.3727/096368915X687778 CrossRefPubMedGoogle Scholar
  82. 82.
    Björkqvist J, Jämsä A, Renné T (2013) Plasma kallikrein: the bradykinin-producing enzyme. Thromb Haemost 110:399–407.  https://doi.org/10.1160/TH13-03-0258 CrossRefPubMedGoogle Scholar
  83. 83.
    Leeb-Lundberg LMF, Kang DS, Lamb ME, Fathy DB (2001) The human B1 bradykinin receptor exhibits high ligand-independent, constitutive activity: roles of residues in the fourth intracellular and third transmembrane domains. J Biol Chem 276:8785–8792.  https://doi.org/10.1074/jbc.M007396200 CrossRefPubMedGoogle Scholar
  84. 84.
    Teng YD (2015) Kinin-B1 and B2 receptors and neural differentiation of pluripotent or multipotent stem cells. Cytom Part A 87:979–981.  https://doi.org/10.1002/cyto.a.22688 CrossRefGoogle Scholar
  85. 85.
    Ehrenfeld P, Matus CE, Pavicic F, Toledo C, Nualart F, Gonzalez CB, Burgos RA, Bhoola KD, Figueroa CD (2009) Kinin B 1 receptor activation turns on exocytosis of matrix metalloprotease-9 and myeloperoxidase in human neutrophils: involvement of mitogen-activated protein kinase family. J Leukoc Biol 86:1179–1189.  https://doi.org/10.1189/jlb.0109012 CrossRefPubMedGoogle Scholar
  86. 86.
    Marceau F (1995) Kinin B1 receptors: a review. Immunopharmacology 30:1–26.  https://doi.org/10.1016/0162-3109(95)00011-H CrossRefPubMedGoogle Scholar
  87. 87.
    Raidoo DM, Sawant S, Mahabeer R, Bhoola KD (1999) Kinin receptors are expressed in human astrocytic tumour cells. Immunopharmacology 43:255–263CrossRefPubMedGoogle Scholar
  88. 88.
    Barki-Harrington L, Bookout AL, Wang G et al (2003) Requirement for direct cross-talk between B1 and B2 kinin receptors for the proliferation of androgen-insensitive prostate cancer PC3 cells. Biochem J 371:581–587.  https://doi.org/10.1042/BJ20021708 CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Lu DY, Leung YM, Huang SM, Wong KL (2010) Bradykinin-induced cell migration and COX-2 production mediated by the bradykinin B1 receptor in glioma cells. J Cell Biochem 110:141–150.  https://doi.org/10.1002/jcb.22520 CrossRefPubMedGoogle Scholar
  90. 90.
    Molina L, Matus CE, Astroza A, Pavicic F, Tapia E, Toledo C, Perez JA, Nualart F, Gonzalez CB, Burgos RA, Figueroa CD, Ehrenfeld P, Poblete MT (2009) Stimulation of the bradykinin B1 receptor induces the proliferation of estrogen-sensitive breast cancer cells and activates the ERK1/2 signaling pathway. Breast Cancer Res Treat 118:499–510.  https://doi.org/10.1007/s10549-009-0314-4 CrossRefPubMedGoogle Scholar
  91. 91.
    Trujillo CA, Negraes PD, Schwindt TT, Lameu C, Carromeu C, Muotri AR, Pesquero JB, Cerqueira DM, Pillat MM, de Souza HDN, Turaça LT, Abreu JG, Ulrich H (2012) Kinin-B2 receptor activity determines the differentiation fate of neural stem cells. J Biol Chem 287:44046–44061.  https://doi.org/10.1074/jbc.M112.407197 CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    da Costa PLN, Sirois P, Tannock IF, Chammas R (2014) The role of kinin receptors in cancer and therapeutic opportunities. Cancer Lett 345:27–38.  https://doi.org/10.1016/j.canlet.2013.12.009 CrossRefPubMedGoogle Scholar
  93. 93.
    Kashuba E, Bailey J, Allsup D, Cawkwell L (2013) The kinin-kallikrein system: physiological roles, pathophysiology and its relationship to cancer biomarkers. Biomarkers 18:279–296.  https://doi.org/10.3109/1354750X.2013.787544 CrossRefPubMedGoogle Scholar
  94. 94.
    Nicoletti NF, Sénécal J, da Silva VD, Roxo MR, Ferreira NP, de Morais RLT, Pesquero JB, Campos MM, Couture R, Morrone FB (2017) Primary role for Kinin B1 and B2 receptors in glioma proliferation. Mol Neurobiol 54:7869–7882.  https://doi.org/10.1007/s12035-016-0265-9 CrossRefPubMedGoogle Scholar
  95. 95.
    Uchida M, Chen Z, Liu Y, Black KL (2002) Overexpression of bradykinin type 2 receptors on glioma cells enhances bradykinin-mediated blood-brain tumor barrier permeability increase. Neurol Res 24:739–746.  https://doi.org/10.1179/016164102101200753 CrossRefPubMedGoogle Scholar
  96. 96.
    Ronaldson PT, Davis TP (2011) Targeting blood-brain barrier changes during inflammatory pain: an opportunity for optimizing CNS drug delivery. Ther Deliv 2:1015–1041.  https://doi.org/10.4155/tde.11.67 CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Ishihara K, Hayash I, Yamashina S, Majima M (2001) A potential role of bradykinin in angiogenesis and growth of S-180 mouse tumors. Jpn J Pharmacol 87:318–326CrossRefPubMedGoogle Scholar
  98. 98.
    Hardee ME, Zagzag D (2012) Mechanisms of glioma-associated neovascularization. Am J Pathol 181:1126–1141.  https://doi.org/10.1016/j.ajpath.2012.06.030 CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Côté J, Bovenzi V, Savard M, Dubuc C, Fortier A, Neugebauer W, Tremblay L, Müller-Esterl W, Tsanaclis AM, Lepage M, Fortin D, Gobeil F (2012) Induction of selective blood-tumor barrier permeability and macromolecular transport by a biostable kinin B1 receptor agonist in a glioma rat model. PLoS One 7:e37485.  https://doi.org/10.1371/journal.pone.0037485 CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Pillat MM, Oliveira MN, Motaln H, Breznik B, Glaser T, Lah TT, Ulrich H (2016) Glioblastoma-mesenchymal stem cell communication modulates expression patterns of kinin receptors: possible involvement of bradykinin in information flow. Cytometry A 89:365–375.  https://doi.org/10.1002/cyto.a.22800 CrossRefPubMedGoogle Scholar
  101. 101.
    Wolf K, Friedl P (2011) Extracellular matrix determinants of proteolytic and non-proteolytic cell migration. Trends Cell Biol 21:736–744.  https://doi.org/10.1016/j.tcb.2011.09.006 CrossRefPubMedGoogle Scholar
  102. 102.
    Friedl P, Wolf K (2003) Tumour-cell invasion and migration: diversity and escape mechanisms. Nat Rev Cancer 3:362–374.  https://doi.org/10.1038/nrc1075 CrossRefPubMedGoogle Scholar
  103. 103.
    Levicar N, Strojnik T, Kos J et al (2002) Lysosomal enzymes, cathepsins in brain tumour invasion. J Neuro-Oncol 58:21–32CrossRefGoogle Scholar
  104. 104.
    Rao JS (2003) Molecular mechanisms of glioma invasiveness: the role of proteases. Nat Rev Cancer 3:489–501.  https://doi.org/10.1038/nrc1121 CrossRefPubMedGoogle Scholar
  105. 105.
    Ifuku M, Farber K, Okuno Y, Yamakawa Y, Miyamoto T, Nolte C, Merrino VF, Kita S, Iwamoto T, Komuro I, Wang B, Cheung G, Ishikawa E, Ooboshi H, Bader M, Wada K, Kettenmann H, Noda M (2007) Bradykinin-induced microglial migration mediated by B1-bradykinin receptors depends on Ca2+ influx via reverse-mode activity of the Na+/Ca2+ exchanger. J Neurosci 27:13065–13073.  https://doi.org/10.1523/JNEUROSCI.3467-07.2007 CrossRefPubMedGoogle Scholar
  106. 106.
    Seifert S, Sontheimer H (2014) Bradykinin enhances invasion of malignant glioma into the brain parenchyma by inducing cells to undergo amoeboid migration. J Physiol 592:5109–5127.  https://doi.org/10.1113/jphysiol.2014.274498 CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Hood JD, Cheresh DA (2002) Role of integrins in cell invasion and migration. Nat Rev Cancer 2:91–100.  https://doi.org/10.1038/nrc727 CrossRefPubMedGoogle Scholar
  108. 108.
    Clapham DE (2007) Calcium Signaling. Cell 131:1047–1058.  https://doi.org/10.1016/j.cell.2007.11.028 CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Montana V, Sontheimer H (2011) Bradykinin promotes the chemotactic invasion of primary brain tumors. J Neurosci 31:4858–4867.  https://doi.org/10.1523/jneurosci.3825-10.2011 CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Diksin M, Smith SJ, Rahman R (2017) The molecular and phenotypic basis of the glioma invasive perivascular niche. Int J Mol Sci 18:2342.  https://doi.org/10.3390/ijms18112342 CrossRefPubMedCentralGoogle Scholar
  111. 111.
    Kim YM, Jeon ES, Kim MR, Lee JS, Kim JH (2008) Bradykinin-induced expression of α-smooth muscle actin in human mesenchymal stem cells. Cell Signal 20:1882–1889.  https://doi.org/10.1016/j.cellsig.2008.06.021 CrossRefPubMedGoogle Scholar
  112. 112.
    Bao WY, Peng C, Hui LY (2007) Low dose of bradykinin selectively increases intracellular calcium in glioma cells. J Neurol Sci 258:44–51.  https://doi.org/10.1016/j.jns.2007.02.031 CrossRefGoogle Scholar
  113. 113.
    Thompson EG, Sontheimer H (2016) A role for ion channels in perivascular glioma invasion. Eur Biophys J 45:635–648.  https://doi.org/10.1007/s00249-016-1154-x CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Melzer C, Yang Y, Hass R (2016) Interaction of MSC with tumor cells. Cell Commun Signal 14:20.  https://doi.org/10.1186/s12964-016-0143-0 CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Overholtzer M, Mailleux AA, Mouneimne G, Normand G, Schnitt SJ, King RW, Cibas ES, Brugge JS (2007) A nonapoptotic cell death process, entosis, that occurs by cell-in-cell invasion. Cell 131:966–979.  https://doi.org/10.1016/j.cell.2007.10.040 CrossRefPubMedGoogle Scholar
  116. 116.
    Durgan J, Tseng Y-Y, Hamann JC, Domart MC, Collinson L, Hall A, Overholtzer M, Florey O (2017) Mitosis can drive cell cannibalism through entosis. Elife 6.  https://doi.org/10.7554/eLife.27134
  117. 117.
    Maiuri P, Rupprecht JF, Wieser S, Ruprecht V, Bénichou O, Carpi N, Coppey M, de Beco S, Gov N, Heisenberg CP, Lage Crespo C, Lautenschlaeger F, le Berre M, Lennon-Dumenil AM, Raab M, Thiam HR, Piel M, Sixt M, Voituriez R (2015) Actin flows mediate a universal coupling between cell speed and cell persistence. Cell 161:374–386.  https://doi.org/10.1016/j.cell.2015.01.056 CrossRefPubMedGoogle Scholar
  118. 118.
    Kozma R, Ahmed S, Best A, Lim L (1995) The Ras-related protein Cdc42Hs and bradykinin promote formation of peripheral actin microspikes and filopodia in Swiss 3T3 fibroblasts. Mol Cell Biol 15:1942–1952.  https://doi.org/10.1128/MCB.15.4.1942 CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Mercapide J, Rappa G, Lorico A (2012) The intrinsic fusogenicity of glioma cells as a factor of transformation and progression in the tumor microenvironment. Int J Cancer 131:334–343.  https://doi.org/10.1002/ijc.26361 CrossRefPubMedGoogle Scholar
  120. 120.
    Wang R, Sun X, Wang CY, Hu P, Chu CY, Liu S, Zhau HE, Chung LWK (2012) Spontaneous Cancer-stromal cell fusion as a mechanism of prostate Cancer androgen-independent progression. PLoS One 7:e42653.  https://doi.org/10.1371/journal.pone.0042653 CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Bastida-Ruiz D, Van Hoesen K, Cohen M (2016) The dark side of cell fusion. Int J Mol Sci 17:638.  https://doi.org/10.3390/ijms17050638 CrossRefPubMedCentralGoogle Scholar
  122. 122.
    Zhang D, Wang Y, Zhang S (2014) Asymmetric cell division in Polyploid Giant Cancer cells and low eukaryotic cells. Biomed Res Int 2014:1–8.  https://doi.org/10.1155/2014/432652 CrossRefGoogle Scholar
  123. 123.
    Dittmar T, Schwitalla S, Seidel J, Haverkampf S, Reith G, Meyer-Staeckling S, Brandt BH, Niggemann B, Zänker KS (2011) Characterization of hybrid cells derived from spontaneous fusion events between breast epithelial cells exhibiting stem-like characteristics and breast cancer cells. Clin Exp Metastasis 28:75–90.  https://doi.org/10.1007/s10585-010-9359-3 CrossRefPubMedGoogle Scholar
  124. 124.
    Dittmar T, Zänker KS (2015) Tissue regeneration in the chronically inflamed tumor environment: implications for cell fusion driven tumor progression and therapy resistant tumor hybrid cells. Int J Mol Sci 16:30362–30381.  https://doi.org/10.3390/ijms161226240 CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Singec I, Snyder EY (2008) Inflammation as a matchmaker: revisiting cell fusion. Nat Cell Biol 10:503–505.  https://doi.org/10.1038/ncb0508-503 CrossRefPubMedGoogle Scholar
  126. 126.
    Rizvi AZ, Swain JR, Davies PS, Bailey AS, Decker AD, Willenbring H, Grompe M, Fleming WH, Wong MH (2006) Bone marrow-derived cells fuse with normal and transformed intestinal stem cells. Proc Natl Acad Sci 103:6321–6325.  https://doi.org/10.1073/pnas.0508593103 CrossRefPubMedGoogle Scholar
  127. 127.
    Ogle BM, Cascalho M, Platt JL (2005) Biological implications of cell fusion. Nat Rev Mol Cell Biol 6:567–575.  https://doi.org/10.1038/nrm1678 CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Pfannkuche K (2015) Cell fusion: overviews and methods: second edition. Cell fusion overviews methods second Ed 1–248.  https://doi.org/10.1007/978-1-4939-2703-6
  129. 129.
    Yan B, Wang J, Liu L (2016) Chemotherapy promotes tumour cell hybridization in vivo. Tumor Biol 37:5025–5030.  https://doi.org/10.1007/s13277-015-4337-7 CrossRefGoogle Scholar
  130. 130.
    Kim SM, Jeong CH, Woo JS, Ryu CH, Lee JH, Jeun SS (2015) In vivo near-infrared imaging for the tracking of systemically delivered mesenchymal stem cells: tropism for brain tumors and biodistribution. In vivo near-infrared imaging for the tracking of systemically delivered mesenchymal stem cells: tropism for brain tumors and biodistribution Int J Nanomedicine:13.  https://doi.org/10.2147/IJN.S97073
  131. 131.
    Würth R, Bajetto A, Harrison JK et al (2014) CXCL12 modulation of CXCR4 and CXCR7 activity in human glioblastoma stem-like cells and regulation of the tumor microenvironment. Front Cell Neurosci 8:1–19.  https://doi.org/10.3389/fncel.2014.00144 CrossRefGoogle Scholar
  132. 132.
    Figueroa CD, Matus CE, Pavicic F, Sarmiento J, Hidalgo MA, Burgos RA, Gonzalez CB, Bhoola KD, Ehrenfeld P (2015) Kinin B 1 receptor regulates interactions between neutrophils and endothelial cells by modulating the levels of mac-1, LFA-1 and intercellular adhesion molecule-1. Innate Immun 21:289–304.  https://doi.org/10.1177/1753425914529169 CrossRefPubMedGoogle Scholar
  133. 133.
    Stewart JM, Gera L, Chan DC, Bunn Jr PA, York EJ, Simkeviciene V, Helfrich B (2002) Bradykinin-related compounds as new drugs for cancer and inflammation. Can J Physiol Pharmacol 80:275–280CrossRefPubMedGoogle Scholar
  134. 134.
    Whalley ET, Figueroa CD, Gera L, Bhoola KD (2012) Discovery and therapeutic potential of kinin receptor antagonists. Expert Opin Drug Discov 1:1–20.  https://doi.org/10.1517/17460441.2012.729038 CrossRefGoogle Scholar
  135. 135.
    Montana V, Sontheimer H (2011) Bradykinin promotes the chemotactic invasion of primary brain tumors. J Neurosci 31:4858–4867.  https://doi.org/10.1523/JNEUROSCI.3825-10.2011 CrossRefPubMedPubMedCentralGoogle Scholar
  136. 136.
    Seifert S, Sontheimer H (2014) Bradykinin enhances invasion of malignant glioma into the brain parenchyma by inducing cells to undergo amoeboid migration. J Physiol 592:5109–5127.  https://doi.org/10.1113/jphysiol.2014.274498 CrossRefPubMedPubMedCentralGoogle Scholar
  137. 137.
    Barki-Harrington L, Bookout AL, Wang G et al (2003) Requirement for direct cross-talk between B1 and B2 kinin receptors for the proliferation of androgen-insensitive prostate cancer PC3 cells. Biochem J 371:581–587.  https://doi.org/10.1042/bj20021708 CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Zhang X, Tan F, Brovkovych V, Zhang Y, Skidgel RA (2011) Cross-talk between carboxypeptidase M and the Kinin B1 receptor mediates a new mode of G protein-coupled receptor signaling. J Biol Chem 286:18547–18561.  https://doi.org/10.1074/jbc.M110.214940 CrossRefPubMedPubMedCentralGoogle Scholar
  139. 139.
    Zhang X, Tan F, Zhang Y, Skidgel RA (2008) Carboxypeptidase M and Kinin B1 receptors interact to facilitate efficient B1 signaling from B2 agonists. J Biol Chem 283:7994–8004.  https://doi.org/10.1074/jbc.M709837200 CrossRefPubMedGoogle Scholar
  140. 140.
    Kozma R, Ahmed S, Best A, Lim L (1995) The Ras-related protein Cdc42Hs and bradykinin promote formation of peripheral actin microspikes and filopodia in Swiss 3T3 fibroblasts. Mol Cell Biol 15:1942–1952CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Biochemistry, Institute of ChemistryUniversity of São PauloSão PauloBrazil
  2. 2.Jožef Stefan International Postgraduate SchoolLjubljanaSlovenia
  3. 3.Department of Genetic Toxicology and Cancer BiologyNational Institute of BiologyLjubljanaSlovenia
  4. 4.Department of Biochemistry, Faculty of Chemistry and Chemical EngineeringUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations