Advertisement

The Tumor Microenvironment in Post-Transplant Lymphoproliferative Disorders

  • Lukas Marcelis
  • Thomas TousseynEmail author
Review
  • 52 Downloads

Abstract

Post-transplant lymphoproliferative disorders (PTLDs) cover a broad spectrum of lymphoproliferative lesions arising after solid organ or allogeneic hematopoietic stem cell transplantation. The composition and function of the tumor microenvironment (TME), consisting of all non-malignant constituents of a tumor, is greatly impacted in PTLD through a complex interplay between 4 factors: 1) the graft organ causes immune stimulation through chronic antigen presentation; 2) the therapy to prevent organ rejection interferes with the immune system; 3) the oncogenic Epstein-Barr virus (EBV), present in 80% of PTLDs, has a causative role in the oncogenic transformation of lymphocytes and influences immune responses; 4) interaction with the donor-derived immune cells accompanying the graft. These factors make PTLDs an interesting model to look at cancer-microenvironment interactions and current findings can be of interest for other malignancies including solid tumors. Here we will review the current knowledge of the TME composition in PTLD with a focus on the different factors involved in PTLD development.

Keywords

Post-transplant lymphoproliferative disorders Epstein-Barr virus Microenvironment, immunosuppression 

Notes

Acknowledgments

We would like to recognize and thank the other members of the ‘Leuven PTLD consortium’: prof. dr. Daan Dierickx and prof. dr. Gregor Verhoef (department of Hematology) and prof. dr. Olivier Gheysens (department of Nuclear Medicine) with whom we collaborate for all PTLD focused research. The artwork used for Fig. 1 was created by Veerle Haemels.

Financial Support

TT holds a Mandate for Fundamental and Translational Research from the ‘Stichting tegen Kanker’ (2014–083).

LM is a PhD student, financially supported by KULeuven, Department of Imaging and Pathology, ‘Stefanie’s Rozen fonds’, ‘Fonds Tom Debackere’, ‘Stichting Me to You (https://www.stichtingmetoyou.be/nl/)’ and “Emmanuel van der Schueren beurs (Kom op tegen Kanker)’.

Compliance with Ethical Standards

Conflicts of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Swerdlow S (2017) Post-transplant lymphoproliferative diorders. In: Swerdlow S (ed) WHO classification of Tumours of Haematopoietic and lymphoid tissues, revised 4t. Lyon, pp 453–462Google Scholar
  2. 2.
    Morscio J, Dierickx D, Tousseyn T (2013) Molecular pathogenesis of B-cell posttransplant lymphoproliferative disorder: what do we know so far? Clin Dev Immunol 2013:1–13.  https://doi.org/10.1155/2013/150835 CrossRefGoogle Scholar
  3. 3.
    Dierickx D, Habermann T (2018) Post-transplantation lymphoproliferative disorders in adults. N Engl J Med 378:549–562CrossRefGoogle Scholar
  4. 4.
    Nuckols JD, Baron PW, Stenzel TT, Olatidoye BA, Tuttle-Newhall JE, Clavien PA, Howell DN (2000) The pathology of liver-localized post-transplant lymphoproliferative disease: a report of three cases and a review of the literature. Am J Surg Pathol 24:733–741CrossRefPubMedGoogle Scholar
  5. 5.
    Scott DW, Gascoyne RD (2014) The tumour microenvironment in B cell lymphomas. Nat Rev Cancer 14:517–534.  https://doi.org/10.1038/nrc3774 CrossRefPubMedGoogle Scholar
  6. 6.
    Menter T, Tzankov A (2018) Mechanisms of immune evasion and immune modulation by lymphoma cells. Front Oncol 8:1–11.  https://doi.org/10.3389/fonc.2018.00054 CrossRefGoogle Scholar
  7. 7.
    Belli C, Trapani D, Viale G, D'Amico P, Duso BA, Della Vigna P, Orsi F, Curigliano G (2018) Targeting the microenvironment in solid tumors. Cancer Treat Rev 65:22–32.  https://doi.org/10.1016/j.ctrv.2018.02.004 CrossRefPubMedGoogle Scholar
  8. 8.
    Reshef R, Vardhanabhuti S, Luskin MR, Heitjan DF, Hadjiliadis D, Goral S, Krok KL, Goldberg LR, Porter DL, Stadtmauer EA, Tsai DE (2011) Reduction of immunosuppression as initial therapy for posttransplantation lymphoproliferative disorder. Am J Transplant 11:336–347.  https://doi.org/10.1111/j.1600-6143.2010.03387.x CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Thorley-Lawson DA (2005) EBV the prototypical human tumor virus - just how bad is it? J Allergy Clin Immunol 116:251–261.  https://doi.org/10.1016/j.jaci.2005.05.038 CrossRefPubMedGoogle Scholar
  10. 10.
    Álvaro T, Lejeune M, Salvadó MT, et al (2005) Outcome in Hodgkin ’ s Lymphoma Can Be Predicted from the Presence of Accompanying Cytotoxic and Regulatory T Cells Outcome in Hodgkin ’ s Lymphoma Can Be Predicted from the Presence of Accompanying Cytotoxic and Regulatory T Cells 11:1467–1473.  https://doi.org/10.1158/1078-0432.CCR-04-1869
  11. 11.
    Gotti M, Nicola M, Lucioni M, Fiaccadori V, Ferretti V, Sciarra R, Costanza M, Bono E, Molo S, Maffi A, Croci GA, Varettoni M, Frigeni M, Pascutto C, Arcaini L, Bonfichi M, Paulli M, Cazzola M (2017) Independent prognostic impact of tumour-infiltrating macrophages in early-stage Hodgkin’s lymphoma. Hematol Oncol 35:296–302.  https://doi.org/10.1002/hon.2295 CrossRefPubMedGoogle Scholar
  12. 12.
    Steidl C, Lee T, Shah SP, Farinha P, Han G, Nayar T, Delaney A, Jones SJ, Iqbal J, Weisenburger DD, Bast MA, Rosenwald A, Muller-Hermelink HK, Rimsza LM, Campo E, Delabie J, Braziel RM, Cook JR, Tubbs RR, Jaffe ES, Lenz G, Connors JM, Staudt LM, Chan WC, Gascoyne RD (2010) Tumor-associated macrophages and survival in classic Hodgkin’s lymphoma. N Engl J Med 362:875–885.  https://doi.org/10.1056/NEJMoa0905680 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Said J, Isaacson PG, Campo E, Harris NL (2017) HHV8-positive germinotropic lymphoproliferative disorder. In: Swerdlow SH, Campo E, Harris NL et al (eds) WHO classification of Tumours of Haematopoietic and lymphoid tissues, 2017 revis. IARC, Lyon, pp 325–329Google Scholar
  14. 14.
    Finalet Ferreiro J, Morscio J, Dierickx D, Vandenberghe P, Gheysens O, Verhoef G, Zamani M, Tousseyn T, Wlodarska I (2016) EBV-positive and EBV-negative Posttransplant diffuse large B cell lymphomas have distinct genomic and transcriptomic features. Am J Transplant 16:414–425.  https://doi.org/10.1111/ajt.13558 CrossRefPubMedGoogle Scholar
  15. 15.
    Chetaille B, Bertucci F, Finetti P, Esterni B, Stamatoullas A, Picquenot JM, Copin MC, Morschhauser F, Casasnovas O, Petrella T, Molina T, Vekhoff A, Feugier P, Bouabdallah R, Birnbaum D, Olive D, Xerri L (2009) Molecular profiling of classical Hodgkin lymphoma tissues uncovers variations in the tumor microenvironment and correlations with EBV infection and outcome. Blood 113:2765–3775.  https://doi.org/10.1182/blood-2008-07-168096 CrossRefPubMedGoogle Scholar
  16. 16.
    Barros MHM, Vera-Lozada G, Soares FA, Niedobitek G, Hassan R (2012) Tumor microenvironment composition in pediatric classical Hodgkin lymphoma is modulated by age and Epstein-Barr virus infection. Int J Cancer 131:1142–1152.  https://doi.org/10.1002/ijc.27314 CrossRefPubMedGoogle Scholar
  17. 17.
    Finalet Ferreiro J, Rouhigharabaei L, Urbankova H, van der Krogt JA, Michaux L, Shetty S, Krenacs L, Tousseyn T, de Paepe P, Uyttebroeck A, Verhoef G, Taghon T, Vandenberghe P, Cools J, Wlodarska I (2014) Integrative genomic and transcriptomic analysis identified candidate genes implicated in the pathogenesis of hepatosplenic T-cell lymphoma. PLoS One 9:e102977.  https://doi.org/10.1371/journal.pone.0102977 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Morscio J, Tousseyn T (2016) Recent insights in the pathogenesis of post-transplantation lymphoproliferative disorders. World J Transplant 6:505.  https://doi.org/10.5500/wjt.v6.i3.505 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Giunco S, Petrara MR, Zangrossi M, Celeghin A, de Rossi A (2018) Extra-telomeric functions of telomerase in the pathogenesis of Epstein-Barr virus-driven B-cell malignancies and potential therapeutic implications. Infect Agent Cancer 13:1–7.  https://doi.org/10.1186/s13027-018-0186-5 CrossRefGoogle Scholar
  20. 20.
    Gandhi MK, Moll G, Smith C, Dua U, Lambley E, Ramuz O, Gill D, Marlton P, Seymour JF, Khanna R (2007) Galectin-1 mediated suppression of Epstein-Barr virus specific T-cell immunity in classic Hodgkin lymphoma. Blood 110:1326–1329.  https://doi.org/10.1182/blood-2007-01-066100 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Baumforth KRN, Birgersdotter A, Reynolds GM, Wei W, Kapatai G, Flavell JR, Kalk E, Piper K, Lee S, Machado L, Hadley K, Sundblad A, Sjoberg J, Bjorkholm M, Porwit AA, Yap LF, Teo S, Grundy RG, Young LS, Ernberg I, Woodman CBJ, Murray PG (2008) Expression of the Epstein-Barr virus-encoded Epstein-Barr virus nuclear antigen 1 in Hodgkin’s lymphoma cells mediates up-regulation of CCL20 and the migration of regulatory T cells. Am J Pathol 173:195–204.  https://doi.org/10.2353/ajpath.2008.070845 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Vockerodt M, Morgan SL, Kuo M, Wei W, Chukwuma MB, Arrand JR, Kube D, Gordon J, Young LS, Woodman CB, Murray PG (2008) The Epstein-Barr virus oncoprotein, latent membrane protein-1, reprograms germinal Centre B cells towards a Hodgkin’s reed-Sternberg-like phenotype. J Pathol 216:83–92.  https://doi.org/10.1002/path.2384 CrossRefPubMedGoogle Scholar
  23. 23.
    Lambert SL, Martinez OM (2007) Latent membrane protein 1 of EBV activates phosphatidylinositol 3-kinase to induce production of IL-10. J Immunol 179:8225–8234.  https://doi.org/10.4049/jimmunol.179.12.8225 CrossRefPubMedGoogle Scholar
  24. 24.
    Eliopoulos AG, Gallagher NJ, Blake SM et al (1999) Activation of the p38 mitogen-activated protein kinase pathway by Epstein-Barr virus-encoded latent membrane protein 1 coregulates interleukin-6 and interleukin-8 production. J Biol Chem 274:16085–16096CrossRefPubMedGoogle Scholar
  25. 25.
    Liu W, Lin Y, Xiao H, Xing S, Chen H, Chi PD, Zhang G (2014) Epstein-Barr virus infection induces indoleamine 2,3-dioxygenase expression in human monocyte-derived macrophages through p38/mitogen-activated protein kinase and NF-κB pathways: impairment in T cell functions. J Virol 88:6660–6671.  https://doi.org/10.1128/JVI.03678-13 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Flavell JR, Baumforth KRN, Wood VHJ, Davies GL, Wei W, Reynolds GM, Morgan S, Boyce A, Kelly GL, Young LS, Murray PG (2008) Down-regulation of the TGF-beta target gene, PTPRK, by the Epstein-Barr virus-encoded EBNA1 contributes to the growth and survival of Hodgkin lymphoma cells. Blood 111:292–301.  https://doi.org/10.1182/blood-2006-11-059881 CrossRefPubMedGoogle Scholar
  27. 27.
    Jochum S, Moosmann A, Lang S et al (2012) The EBV immunoevasins vIL-10 and BNLF2a protect newly infected B cells from immune recognition and elimination. PLoS Pathog 8.  https://doi.org/10.1371/journal.ppat.1002704
  28. 28.
    Kitagawa N, Goto M, Kurozumi K et al (2000) Epstein - Barr virus-encoded poly ( a )- RNA supports Burkitt ’ s lymphoma growth through interleukin-10 induction. EMBO J 19:6742–6750.  https://doi.org/10.1093/emboj/19.24.6742 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Nakayama T, Hieshima K, Nagakubo D, Sato E, Nakayama M, Kawa K, Yoshie O (2004) Selective induction of Th2-attracting chemokines CCL17 and CCL22 in human B cells by latent membrane protein 1 of Epstein-Barr virus selective induction of Th2-attracting chemokines CCL17 and CCL22 in human B cells by latent membrane protein 1 of Epstein. J Virol 78:1665–1674.  https://doi.org/10.1128/JVI.78.4.1665 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Cai TT, Ye SB, Liu YN, He J, Chen QY, Mai HQ, Zhang CX, Cui J, Zhang XS, Busson P, Zeng YX, Li J (2017) LMP1-mediated glycolysis induces myeloid-derived suppressor cell expansion in nasopharyngeal carcinoma. PLoS Pathog 13:1–23.  https://doi.org/10.1371/journal.ppat.1006503 CrossRefGoogle Scholar
  31. 31.
    Ouyang J, Juszczynski P, Rodig SJ, Green MR, O'Donnell E, Currie T, Armant M, Takeyama K, Monti S, Rabinovich GA, Ritz J, Kutok JL, Shipp MA (2011) Viral induction and targeted inhibition of galectin-1 in EBV + posttransplant lymphoproliferative disorders. Blood 117:4315–4322.  https://doi.org/10.1182/blood-2010-11-320481 CrossRefPubMedGoogle Scholar
  32. 32.
    Yamamoto R, Nishikori M, Kitawaki T, Sakai T, Hishizawa M, Tashima M, Kondo T, Ohmori K, Kurata M, Hayashi T, Uchiyama T (2008) PD-1 PD-1 ligand interaction contributes to immunosuppressive microenvironment of Hodgkin lymphoma. Blood 111:3220–3224.  https://doi.org/10.1182/blood-2007-05-085159 CrossRefPubMedGoogle Scholar
  33. 33.
    Juszczynski P, Ouyang J, Monti S, Rodig SJ, Takeyama K, Abramson J, Chen W, Kutok JL, Rabinovich GA, Shipp MA (2007) The AP1-dependent secretion of galectin-1 by reed Sternberg cells fosters immune privilege in classical Hodgkin lymphoma. Proc Natl Acad Sci 104:13134–13139.  https://doi.org/10.1073/pnas.0706017104 CrossRefPubMedGoogle Scholar
  34. 34.
    Green MR, Rodig S, Juszczynski P, Ouyang J, Sinha P, O'Donnell E, Neuberg D, Shipp MA (2012) Constitutive AP-1 activity and EBV infection induce PD-l1 in Hodgkin lymphomas and posttransplant lymphoproliferative disorders: implications for targeted therapy. Clin Cancer Res 18:1611–1618.  https://doi.org/10.1158/1078-0432.CCR-11-1942 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Gilardini Montani MS, Santarelli R, Falcinelli L, Gonnella R, Granato M, di Renzo L, Cuomo L, Vitillo M, Faggioni A, Cirone M (2018) EBV up-regulates PD-L1 on the surface of primary monocytes by increasing ROS and activating TLR signaling and STAT3. J Leukoc Biol 104:821–832.  https://doi.org/10.1002/JLB.2A0118-029RR CrossRefPubMedGoogle Scholar
  36. 36.
    Murray P, Bell A (2015) Contribution of the Epstein-Barr virus to the pathogenesis of Hodgkin lymphoma. In: Münz C (ed) Epstein Barr Virus Volume 1. Springer International Publishing, Cham, pp 287–313CrossRefGoogle Scholar
  37. 37.
    Li D, Qian L, Chen C, Shi M, Yu M, Hu M, Song L, Shen B, Guo N (2009) Down-regulation of MHC class II expression through inhibition of CIITA transcription by lytic Transactivator Zta during Epstein-Barr virus reactivation. J Immunol 182:1799–1809.  https://doi.org/10.4049/jimmunol.0802686 CrossRefPubMedGoogle Scholar
  38. 38.
    Savard M, Gosselin J (2006) Epstein-Barr virus immunossuppression of innate immunity mediated by phagocytes. Virus Res 119:134–145.  https://doi.org/10.1016/j.virusres.2006.02.008 CrossRefPubMedGoogle Scholar
  39. 39.
    Savard M, Bélanger C, Tardif M et al (2000) Infection of primary human monocytes by Epstein-Barr virus. J Virol 74:2612–2619.  https://doi.org/10.1128/JVI.74.6.2612-2619.2000 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Iwakiri D, Zhou L, Samanta M, Matsumoto M, Ebihara T, Seya T, Imai S, Fujieda M, Kawa K, Takada K (2009) Epstein-Barr virus (EBV)–encoded small RNA is released from EBV-infected cells and activates signaling from toll-like receptor 3. J Exp Med 206:2091–2099.  https://doi.org/10.1084/jem.20081761 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Albanese M, Tagawa T, Bouvet M, Maliqi L, Lutter D, Hoser J, Hastreiter M, Hayes M, Sugden B, Martin L, Moosmann A, Hammerschmidt W (2016) Epstein–Barr virus microRNAs reduce immune surveillance by virus-specific CD8 + T cells. Proc Natl Acad Sci 113:E6467–E6475.  https://doi.org/10.1073/pnas.1605884113 CrossRefPubMedGoogle Scholar
  42. 42.
    Tagawa T, Albanese M, Bouvet M, Moosmann A, Mautner J, Heissmeyer V, Zielinski C, Lutter D, Hoser J, Hastreiter M, Hayes M, Sugden B, Hammerschmidt W (2016) Epstein-Barr viral miRNAs inhibit antiviral CD4 + T cell responses targeting IL-12 and peptide processing. J Exp Med 213:2065–2080.  https://doi.org/10.1084/jem.20160248 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Iwakiri D (2014) Epstein-Barr virus-encoded RNAs: key molecules in viral pathogenesis. Cancers (Basel) 6:1615–1630.  https://doi.org/10.3390/cancers6031615 CrossRefGoogle Scholar
  44. 44.
    Hawthorne DC, Leupold U, Allday MJ, et al (2015) Epstein Barr Virus Volume 2. Springer International Publishing, ChamGoogle Scholar
  45. 45.
    Allday MJ, Bazot Q, White RE (2015) Epstein Barr Virus Volume 2. Springer International Publishing, ChamGoogle Scholar
  46. 46.
    Martinez OM, Krams SM (2017) The immune response to Epstein Barr virus and implications for posttransplant lymphoproliferative disorder. Transplantation 101:2009–2016.  https://doi.org/10.1097/TP.0000000000001767 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Dolcetti R (2015) Cross-talk between Epstein-Barr virus and microenvironment in the pathogenesis of lymphomas. Semin Cancer Biol 34:58–69.  https://doi.org/10.1016/j.semcancer.2015.04.006 CrossRefPubMedGoogle Scholar
  48. 48.
    Salek-Ardakani S, Arrand JR, Mackett M (2002) Epstein-Barr virus encoded interleukin-10 inhibits HLA-class I, ICAM-1, and B7 expression on human monocytes: implications for immune evasion by EBV. Virology 304:342–351.  https://doi.org/10.1006/viro.2002.1716 CrossRefPubMedGoogle Scholar
  49. 49.
    Samanta M, Takada K (2010) Modulation of innate immunity system by Epstein-Barr virus-encoded non-coding RNA and oncogenesis. Cancer Sci 101:29–35.  https://doi.org/10.1111/j.1349-7006.2009.01377.x CrossRefPubMedGoogle Scholar
  50. 50.
    Maini MK, Gudgeon N, Wedderburn LR, Rickinson AB, Beverley PCL (2000) Clonal expansions in acute EBV infection are detectable in the CD8 and not the CD4 subset and persist with a variable CD45 phenotype. J Immunol 165:5729–5737.  https://doi.org/10.4049/jimmunol.165.10.5729 CrossRefPubMedGoogle Scholar
  51. 51.
    Perera SM, Thomas JA, Burke M, Crawford DH (1998) Analysis of the T-cell micro-environment in Epstein-Barr virus-related post-transplantation B lymphoproliferative disease. J Pathol 184:177–184.  https://doi.org/10.1002/(SICI)1096-9896(199802)184:2<177::AID-PATH977>3.0.CO;2-C CrossRefPubMedGoogle Scholar
  52. 52.
    Heller KN, Upshaw J, Seyoum B, Zebroski H, Munz C (2007) Distinct memory CD4+ T-cell subsets mediate immune recognition of Epstein Barr virus nuclear antigen 1 in healthy virus carriers. Blood 109:1138–1146.  https://doi.org/10.1182/blood-2006-05-023663 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Smets F, Latinne D, Bazin H et al (2002) Ratio between Epstein-Barr viral load and anti-Epstein-Barr virus specific T-cell response as a predictive marker of posttransplant lymphoproliferative disease. Transplantation 73:1603–1610CrossRefPubMedGoogle Scholar
  54. 54.
    Giunco S, Dolcetti R, Keppel S, Celeghin A, Indraccolo S, Dal Col J, Mastorci K, de Rossi A (2013) hTERT inhibition triggers Epstein-Barr virus lytic cycle and apoptosis in immortalized and transformed B cells: a basis for new therapies. Clin Cancer Res 19:2036–2047.  https://doi.org/10.1158/1078-0432.CCR-12-2537 CrossRefPubMedGoogle Scholar
  55. 55.
    Terrin L, Dal Col J, Rampazzo E, Zancai P, Pedrotti M, Ammirabile G, Bergamin S, Rizzo S, Dolcetti R, de Rossi A (2008) Latent membrane protein 1 of Epstein-Barr virus activates the hTERT promoter and enhances telomerase activity in B lymphocytes. J Virol 82:10175–10187.  https://doi.org/10.1128/JVI.00321-08 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Vase MØ, Maksten E, Bendix K et al (2014) Tumor microenvironmental features and outcome in post-transplant lymphoproliferative disorder. Blood 124:1617 LP–1611617Google Scholar
  57. 57.
    Skinnider BF, Mak TW, Houston JP et al (2002) Review article the role of cytokines in classical Hodgkin lymphoma. Cytometry A 77:861–872.  https://doi.org/10.1182/blood-2002-01-0099.BLOOD CrossRefGoogle Scholar
  58. 58.
    Aldinucci D, Lorenzon D, Cattaruzza L, Pinto A, Gloghini A, Carbone A, Colombatti A (2008) Expression of CCR5 receptors on reed-Sternberg cells and Hodgkin lymphoma cell lines: involvement of CCL5/Rantes in tumor cell growth and microenvironmental interactions. Int J Cancer 122:769–776.  https://doi.org/10.1002/ijc.23119 CrossRefPubMedGoogle Scholar
  59. 59.
    Fischer M, Juremalm M, Olsson N, Backlin C, Sundström C, Nilsson K, Enblad G, Nilsson G (2003) Expression of CCL5/RANTES by Hodgkin and reed-Sternberg cells and its possible role in the recruitment of mast cells into lymphomatous tissue. Int J Cancer 107:197–201.  https://doi.org/10.1002/ijc.11370 CrossRefPubMedGoogle Scholar
  60. 60.
    van den Berg A, Visser L, Poppema S (1999) High expression of the CC chemokine TARC in reed-Sternberg cells. Am J Pathol 154:1685–1691.  https://doi.org/10.1016/S0002-9440(10)65424-7 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Kinch A, Sundström C, Baecklund E, Backlin C, Molin D, Enblad G (2018) Expression of PD-1, PD-L1, and PD-L2 in posttransplant lymphoproliferative disorder after solid organ transplantation. Leuk Lymphoma:1–9.  https://doi.org/10.1080/10428194.2018.1480767
  62. 62.
    Chen BJ, Chapuy B, Ouyang J, Sun HH, Roemer MGM, Xu ML, Yu H, Fletcher CDM, Freeman GJ, Shipp MA, Rodig SJ (2013) PD-L1 expression is characteristic of a subset of aggressive B-cell lymphomas and virus-associated malignancies. Clin Cancer Res 19:3462–3473.  https://doi.org/10.1158/1078-0432.CCR-13-0855 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Morscio J, Finalet Ferreiro J, Vander Borght S, Bittoun E, Gheysens O, Dierickx D, Verhoef G, Wlodarska I, Tousseyn T (2017) Identification of distinct subgroups of EBV-positive post-transplant diffuse large B-cell lymphoma. Mod Pathol 30:370–381.  https://doi.org/10.1038/modpathol.2016.199 CrossRefPubMedGoogle Scholar
  64. 64.
    Tardif M, Savard M, Flamand L, Gosselin J (2002) Impaired protein kinase C activation/translocation in Epstein-Barr virus-infected monocytes. J Biol Chem 277:24148–24154.  https://doi.org/10.1074/jbc.M109036200 CrossRefPubMedGoogle Scholar
  65. 65.
    Nanbo A, Inoue K, Adachi-Takasawa K, Takada K (2002) Epstein-Barr virus RNA confers resistance to interferon-alpha-induced apoptosis in Burkitt’s lymphoma. EMBO J 21:954–965.  https://doi.org/10.1093/emboj/21.5.954 CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Yang L, Aozasa K, Oshimi K, Takada K (2004) Epstein-Barr virus ( EBV ) -encoded RNA promotes growth of EBV-infected T cells through Interleukin-9 induction Epstein-Barr virus ( EBV ) -encoded RNA promotes growth of EBV-infected T cells through Interleukin-9 induction. 5332–5337.  https://doi.org/10.1158/0008-5472.CAN-04-0733
  67. 67.
    Keryer-Bibens C, Pioche-Durieu C, Villemant C, Souquère S, Nishi N, Hirashima M, Middeldorp J, Busson P (2006) Exosomes released by EBV-infected nasopharyngeal carcinoma cells convey the viral latent membrane protein 1 and the immunomodulatory protein galectin 9. BMC Cancer 6:283.  https://doi.org/10.1186/1471-2407-6-283 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Münz C, Chijioke O (2017) Natural killer cells in herpesvirus infections. F1000Research 6:1231.  https://doi.org/10.12688/f1000research.11197.1
  69. 69.
    Münz C (2017) Epstein-Barr virus-specific immune control by innate lymphocytes. Front Immunol 8:1–7.  https://doi.org/10.3389/fimmu.2017.01658 CrossRefGoogle Scholar
  70. 70.
    Lunemann A, Vanoaica LD, Azzi T, Nadal D, Munz C (2013) A distinct subpopulation of human NK cells restricts B cell transformation by EBV. J Immunol 191:4989–4995.  https://doi.org/10.4049/jimmunol.1301046 CrossRefPubMedGoogle Scholar
  71. 71.
    Tan G, Visser L, Tan L, Berg A, Diepstra A (2018) The microenvironment in Epstein–Barr virus-associated malignancies. Pathogens 7:40.  https://doi.org/10.3390/pathogens7020040 CrossRefPubMedCentralGoogle Scholar
  72. 72.
    Ishida T, Ishii T, Inagaki A, Yano H, Komatsu H, Iida S, Inagaki H, Ueda R (2006) Specific recruitment of CC chemokine receptor 4-positive regulatory T cells in Hodgkin lymphoma fosters immune privilege. Cancer Res 66:5716–5722.  https://doi.org/10.1158/0008-5472.CAN-06-0261 CrossRefPubMedGoogle Scholar
  73. 73.
    Wu R, Sattarzadeh A, Rutgers B, Diepstra A, van den Berg A, Visser L (2016) The microenvironment of classical Hodgkin lymphoma: heterogeneity by Epstein-Barr virus presence and location within the tumor. Blood Cancer J 6.  https://doi.org/10.1038/bcj.2016.26
  74. 74.
    Morales O, Mrizak D, François V, Mustapha R, Miroux C, Depil S, Decouvelaere AV, Lionne-Huyghe P, Auriault C, de Launoit Y, Pancré V, Delhem N (2014) Epstein-Barr virus infection induces an increase of T regulatory type 1 cells in Hodgkin lymphoma patients. Br J Haematol 166:875–890.  https://doi.org/10.1111/bjh.12980 CrossRefPubMedGoogle Scholar
  75. 75.
    Assis MCG, Campos AHFM, Oliveira JSR, Soares FA, Silva JMK, Silva PB, Penna AD, Souza EM, Baiocchi OCG (2012) Increased expression of CD4+CD25+FOXP3+ regulatory T cells correlates with Epstein-Barr virus and has no impact on survival in patients with classical Hodgkin lymphoma in Brazil. Med Oncol 29:3614–3619.  https://doi.org/10.1007/s12032-012-0299-4 CrossRefPubMedGoogle Scholar
  76. 76.
    Gandhi MK, Lambley E, Duraiswamy J et al (2006) Expression of LAG-3 by tumor-infiltrating lymphocytes is coincident with the suppression of latent membrane antigen-specific CD8+ T-cell function in Hodgkin lymphoma patients. Blood 108:2280–2289.  https://doi.org/10.1182/blood-2006-04-015164 CrossRefPubMedGoogle Scholar
  77. 77.
    Braz-Silva PH, Vitale S, Butori C, Guevara N, Santini J, Magalhães M, Hofman P, Doglio A (2011) Specific infiltration of langerin-positive dendritic cells in EBV-infected tonsil, Hodgkin lymphoma and nasopharyngeal carcinoma. Int J Cancer 128:2501–2508.  https://doi.org/10.1002/ijc.25597 CrossRefPubMedGoogle Scholar
  78. 78.
    Barros MHM, Hassan R, Niedobitek G et al (2012) Tumor-associated macrophages in pediatric classical Hodgkin lymphoma: association with Epstein-Barr virus, lymphocyte subsets, and prognostic impact. Clin Cancer Res 18:3762–3771.  https://doi.org/10.1158/1078-0432.CCR-12-0129 CrossRefPubMedGoogle Scholar
  79. 79.
    Kamper P, Bendix K, Hamilton-Dutoit S, Honore B, Nyengaard JR, d'Amore F (2011) Tumor-infiltrating macrophages correlate with adverse prognosis and Epstein-Barr virus status in classical Hodgkin’s lymphoma. Haematologica 96:269–276.  https://doi.org/10.3324/haematol.2010.031542 CrossRefPubMedGoogle Scholar
  80. 80.
    Swerdlow SH, Campo E, Harris NL, et al (2008) WHO classification of Tumours of Haematopoietic and lymphoid tissues, revised fourth edition, revised 4t. World Health OrganizationGoogle Scholar
  81. 81.
    Nicolae A, Pittaluga S, Abdullah S, Steinberg SM, Pham TA, Davies-Hill T, Xi L, Raffeld M, Jaffe ES (2015) EBV-positive large B-cell lymphomas in young patients: a nodal lymphoma with evidence for a tolerogenic immune environment. Blood 126:863–872.  https://doi.org/10.1182/blood-2015-02-630632 CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Pawelec G (2018) Age and immunity: what is “immunosenescence”? Exp Gerontol 105:4–9.  https://doi.org/10.1016/j.exger.2017.10.024 CrossRefPubMedGoogle Scholar
  83. 83.
    Sugita Y, Furuta T, Ohshima K, Komaki S, Miyoshi J, Morioka M, Abe H, Nozawa T, Fujii Y, Takahashi H, Kakita A (2017) The perivascular microenvironment in Epstein-Barr virus positive primary central nervous system lymphoma: the role of programmed cell death 1 and programmed cell death ligand 1. Neuropathology 38:125–134.  https://doi.org/10.1111/neup.12435 CrossRefPubMedGoogle Scholar
  84. 84.
    Taylor JG, Liapis K, Gribben JG (2015) The role of the tumor microenvironment in HIV-associated lymphomas. Biomark Med 9:473–482.  https://doi.org/10.2217/bmm.15.13 CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Jones RB, Ndhlovu LC, Barbour JD, Sheth PM, Jha AR, Long BR, Wong JC, Satkunarajah M, Schweneker M, Chapman JM, Gyenes G, Vali B, Hyrcza MD, Yue FY, Kovacs C, Sassi A, Loutfy M, Halpenny R, Persad D, Spotts G, Hecht FM, Chun TW, McCune JM, Kaul R, Rini JM, Nixon DF, Ostrowski MA (2008) Tim-3 expression defines a novel population of dysfunctional T cells with highly elevated frequencies in progressive HIV-1 infection. J Exp Med 205:2763–2779.  https://doi.org/10.1084/jem.20081398 CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Buggert M, Nguyen S, Salgado-Montes de Oca G, Bengsch B, Darko S, Ransier A, Roberts ER, del Alcazar D, Brody IB, Vella LA, Beura L, Wijeyesinghe S, Herati RS, del Rio Estrada PM, Ablanedo-Terrazas Y, Kuri-Cervantes L, Sada Japp A, Manne S, Vartanian S, Huffman A, Sandberg JK, Gostick E, Nadolski G, Silvestri G, Canaday DH, Price DA, Petrovas C, Su LF, Vahedi G, Dori Y, Frank I, Itkin MG, Wherry EJ, Deeks SG, Naji A, Reyes-Terán G, Masopust D, Douek DC, Betts MR (2018) Identification and characterization of HIV-specific resident memory CD8+ T cells in human lymphoid tissue. Sci Immunol 3.  https://doi.org/10.1126/sciimmunol.aar4526
  87. 87.
    Pantanowitz L, Carbone A, Dolcetti R (2015) Microenvironment and HIV-related lymphomagenesis. Semin Cancer Biol 34:52–57.  https://doi.org/10.1016/j.semcancer.2015.06.002 CrossRefPubMedGoogle Scholar
  88. 88.
    Wherry EJ, Kurachi M (2015) Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol 15:486–499.  https://doi.org/10.1038/nri3862 CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Davoodzadeh Gholami M, kardar GA, Saeedi Y, et al (2017) Exhaustion of T lymphocytes in the tumor microenvironment: significance and effective mechanisms. Cell Immunol 322:1–14.  https://doi.org/10.1016/j.cellimm.2017.10.002
  90. 90.
    Petrovas C, Casazza JP, Brenchley JM, Price DA, Gostick E, Adams WC, Precopio ML, Schacker T, Roederer M, Douek DC, Koup RA (2006) PD-1 is a regulator of virus-specific CD8 + T cell survival in HIV infection. J Exp Med 203:2281–2292.  https://doi.org/10.1084/jem.20061496 CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Kaufmann DE, Walker BD (2008) Programmed death-1 as a factor in immune exhaustion and activation in HIV infection. Curr Opin HIV AIDS 3:Google Scholar
  92. 92.
    Fahey LM, Wilson EB, Elsaesser H, Fistonich CD, McGavern DB, Brooks DG (2011) Viral persistence redirects CD4 T cell differentiation toward T follicular helper cells. J Exp Med 208:987–999.  https://doi.org/10.1084/jem.20101773 CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Streeck H, Brumme ZL, Anastario M, Cohen KW, Jolin JS, Meier A, Brumme CJ, Rosenberg ES, Alter G, Allen TM, Walker BD, Altfeld M (2008) Antigen load and viral sequence diversification determine the functional profile of HIV-1-specific CD8+ T cells. PLoS Med 5:0790–0803.  https://doi.org/10.1371/journal.pmed.0050100 CrossRefGoogle Scholar
  94. 94.
    Moran J, Dean J, De Oliveira A et al (2013) Increased levels of PD-1 expression on CD8 T cells in patients post-renal transplant irrespective of chronic high EBV viral load. Pediatr Transplant 17:806–814.  https://doi.org/10.1111/petr.12156 CrossRefPubMedGoogle Scholar
  95. 95.
    Cohen M, Vistarop AG, Huaman F, Narbaitz M, Metrebian F, de Matteo E, Preciado MV, Chabay PA (2017) Cytotoxic response against Epstein Barr virus coexists with diffuse large B-cell lymphoma tolerogenic microenvironment: clinical features and survival impact. Sci Rep 7:10813.  https://doi.org/10.1038/s41598-017-11052-z CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Von Boehmer L, Draenert A, Jungraithmayr W et al (2012) Immunosuppression and lung cancer of donor origin after bilateral lung transplantation. Lung Cancer 76:118–122.  https://doi.org/10.1016/j.lungcan.2011.10.001 CrossRefGoogle Scholar
  97. 97.
    Bererhi L, Pallet N, Zuber J, Anglicheau D, Kreis H, Legendre C, Candon S (2012) Clinical and immunological features of very long-term survivors with a single renal transplant. Transpl Int 25:545–554.  https://doi.org/10.1111/j.1432-2277.2012.01451.x CrossRefPubMedGoogle Scholar
  98. 98.
    Tsai DE, Hardy CL, Tomaszewski JE, Kotloff RM, Oltoff KM, Somer BG, Schuster SJ, Porter DL, Montone KT, Stadtmauer EA (2001) Reduction in immunosuppression as initial therapy for posttransplant lymphoproliferative disorder: analysis of prognostic variables and long-term follow-up of 42 adult patients. Transplantation 71:1076–1088CrossRefPubMedGoogle Scholar
  99. 99.
    Dierickx D, Tousseyn T, Gheysens O (2015) How I treat how I treat posttransplant lymphoproliferative disorders case reports. Blood 126:2274–2284.  https://doi.org/10.1182/blood-2015-05-615872 CrossRefPubMedGoogle Scholar
  100. 100.
    Pietersma FL, van Oosterom A, Ran L, Schuurman R, Meijer E, de Jonge N, van Baarle D (2012) Adequate control of primary EBV infection and subsequent reactivations after cardiac transplantation in an EBV seronegative patient. Transpl Immunol 27:48–51.  https://doi.org/10.1016/j.trim.2012.02.001 CrossRefPubMedGoogle Scholar
  101. 101.
    Falco D a, Nepomuceno RR, Krams SM et al (2002) Identification of Epstein-Barr virus-specific CD8+ T lymphocytes in the circulation of pediatric transplant recipients. Transplantation 74:501–510CrossRefPubMedGoogle Scholar
  102. 102.
    Richendollar BG, Tsao RE, Elson P, Jin T, Steinle R, Pohlman B, Hsi ED (2009) Predictors of outcome in post-transplant lymphoproliferative disorder: an evaluation of tumor infiltrating lymphocytes in the context of clinical factors. Leuk Lymphoma 50:2005–2012.  https://doi.org/10.3109/10428190903315713 CrossRefPubMedGoogle Scholar
  103. 103.
    Calvo-Turrubiartes M, Romano-Moreno S, García-Hernández M, Chevaile-Ramos JA, Layseca-Espinosa E, González-Amaro R, Portales-Pérez D (2009) Quantitative analysis of regulatory T cells in kidney graft recipients: a relationship with calcineurin inhibitor level. Transpl Immunol 21:43–49.  https://doi.org/10.1016/j.trim.2009.02.002 CrossRefPubMedGoogle Scholar
  104. 104.
    Carmona-Escamilla MA, Queipo G, García-Mosqueda LA, García-Covarrubias L, Fonseca-Sánchez MA, Villanueva-Ortega E, Prieto P, Lascurain R (2018) Peripheral blood regulatory T cells are diminished in kidney transplant patients with chronic allograft nephropathy. Transplant Proc 50:444–448.  https://doi.org/10.1016/j.transproceed.2018.01.001 CrossRefPubMedGoogle Scholar
  105. 105.
    Chadburn A, Chen JM, Hsu DT, Frizzera G, Cesarman E, Garrett TJ, Mears JG, Zangwill SD, Addonizio LJ, Michler RE, Knowles DM (1998) The morphologic and molecular genetic categories of posttransplantation lymphoproliferative disorders are clinically relevant. Cancer 82:1978–1987.  https://doi.org/10.1002/(SICI)1097-0142(19980515)82:10<1978::AID-CNCR23>3.0.CO;2-P CrossRefPubMedGoogle Scholar
  106. 106.
    Nelson BP, Wolniak KL, Evens A, Chenn A, Maddalozzo J, Proytcheva M (2012) Early posttransplant lymphoproliferative disease. Am J Clin Pathol 138:568–578.  https://doi.org/10.1309/AJCPQYYE04AVGVYI CrossRefPubMedGoogle Scholar
  107. 107.
    Vakiani E, Basso K, Klein U, Mansukhani MM, Narayan G, Smith PM, Murty VV, Dalla-Favera R, Pasqualucci L, Bhagat G (2008) Genetic and phenotypic analysis of B-cell post-transplant lymphoproliferative disorders provides insights into disease biology. Hematol Oncol 26:199–211.  https://doi.org/10.1002/hon.859 CrossRefPubMedGoogle Scholar
  108. 108.
    Ibrahim HAH, Menasce L, Pomplun S et al (2011) Tumour infiltrating plasmacytoid dendritic cells in B cell post-transplant lymphoproliferative disorders, human immunodeficiency virus-associated B cell lymphomas and immune competent diffuse large B cell lymphomas. Histopathology 59:152–156.  https://doi.org/10.1111/j.1365-2559.2011.03872.x CrossRefPubMedGoogle Scholar
  109. 109.
    Birkeland SA, Bendtzen K, Møller B et al (1999) Interleukin-10 and Posttransplant lymphoproliferative disorder after kidney transplantation. Immunobiology 67:876–881Google Scholar
  110. 110.
    Muti G, Klersy C, Baldanti F, Granata S, Oreste P, Pezzetti L, Gatti M, Gargantini L, Caramella M, Mancini V, Gerna G, Morra E, for the Co-operative Study Group on PTLDs* (2003) Epstein – Barr virus ( EBV ) load and interleukin-10 in lymphoproliferative disorders. Br J Haematol 122:927–933CrossRefPubMedGoogle Scholar
  111. 111.
    Wu TT, Swerdlow SH, Locker J, Bahler D, Randhawa P, Yunis EJ, Dickman PS, Nalesnik MA (1996) Recurrent Epstein-Barr virus-associated lesions in organ transplant recipients. Hum Pathol 27:157–164.  https://doi.org/10.1016/S0046-8177(96)90369-X CrossRefPubMedGoogle Scholar
  112. 112.
    Dierickx D, Tousseyn T, Sagaert X, Fieuws S, Wlodarska I, Morscio J, Brepoels L, Kuypers D, Vanhaecke J, Nevens F, Verleden G, van Damme-Lombaerts R, Renard M, Pirenne J, de Wolf-Peeters C, Verhoef G (2013) Single-center analysis of biopsy-confirmed posttransplant lymphoproliferative disorder: incidence, clinicopathological characteristics and prognostic factors. Leuk Lymphoma 54:2433–2440.  https://doi.org/10.3109/10428194.2013.780655 CrossRefPubMedGoogle Scholar
  113. 113.
    Ferreiro JF, Morscio J, Dierickx D, Marcelis L, Verhoef G, Vandenberghe P, Tousseyn T, Wlodarska I (2015) Post-transplant molecularly defined Burkitt lymphomas are frequently MYC-negative and characterized by the 11q-gain/loss pattern. Haematologica 100:e275–e279.  https://doi.org/10.3324/haematol.2015.124305 CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Herreman A, Dierickx D, Morscio J, Camps J, Bittoun E, Verhoef G, de Wolf-Peeters C, Sagaert X, Tousseyn T (2013) Clinicopathological characteristics of posttransplant lymphoproliferative disorders of T-cell origin: single-center series of nine cases and meta-analysis of 147 reported cases. Leuk Lymphoma 54:2190–2199.  https://doi.org/10.3109/10428194.2013.775436 CrossRefPubMedGoogle Scholar
  115. 115.
    Morscio J, Dierickx D, Ferreiro JF, Herreman A, Van Loo P, Bittoun E, Verhoef G, Matthys P, Cools J, Wlodarska I, De Wolf-Peeters C, Sagaert X, Tousseyn T (2013) Gene expression profiling reveals clear differences between EBV-positive and EBV-negative posttransplant lymphoproliferative disorders. Am J Transplant 13(5):1305–1316Google Scholar
  116. 116.
    Fu L, Xie J, Lin J, Wang J, Wei N, Huang D, Wang T, Shen J, Zhou X, Wang Z (2017) Monomorphic post-transplant lymphoproliferative disorder after kidney transplantation and hematopoietic stem cell transplantation: Clinicopathological characteristics, treatments and prognostic factors. Indian J Hematol Blood Transfus 33:492–499.  https://doi.org/10.1007/s12288-017-0799-7 CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Brody J, Kohrt H, Marabelle A, Levy R (2011) Active and passive immunotherapy for lymphoma: proving principles and improving results. J Clin Oncol 29:1864–1875.  https://doi.org/10.1200/JCO.2010.33.4623 CrossRefPubMedGoogle Scholar
  118. 118.
    Barnett R, Barta VS, Jhaveri KD (2017) Preserved renal-allograft function and the PD-1 pathway inhibitor Nivolumab. N Engl J Med 376:191–192.  https://doi.org/10.1056/NEJMc1614298 CrossRefPubMedGoogle Scholar
  119. 119.
    Perrine SP, Hermine O, Small T, Suarez F, O'Reilly R, Boulad F, Fingeroth J, Askin M, Levy A, Mentzer SJ, di Nicola M, Gianni AM, Klein C, Horwitz S, Faller DV (2007) A phase 1/2 trial of arginine butyrate and ganciclovir in patients with Epstein-Barr virus-associated lymphoid malignancies. Blood 109:2571–2578.  https://doi.org/10.1182/blood-2006-01-024703 CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Andrews LP, Marciscano AE, Drake CG, Vignali DAA (2017) LAG3 (CD223) as a cancer immunotherapy target. Immunol Rev 276:80–96.  https://doi.org/10.1111/imr.12519 CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Melero I, Berman DM, Aznar MA, Korman AJ, Gracia JLP, Haanen J (2015) Evolving synergistic combinations of targeted immunotherapies to combat cancer. Nat Rev Cancer 15:457–472.  https://doi.org/10.1038/nrc3973 CrossRefPubMedGoogle Scholar
  122. 122.
    Lipson EJ, Bagnasco SM, Moore J et al (2016) Tumor regression and allograft rejection after Administration of Anti-PD-1. N Engl J Med 374:896–898.  https://doi.org/10.1056/NEJMc1509268 CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Gottschalk S, Rooney CM (2015) Adoptive T-cell immunotherapy BT - Epstein Barr virus volume 2: one herpes virus: many diseases. In: Münz C (ed). Springer International Publishing, Cham, pp 427–454Google Scholar
  124. 124.
    Heslop HE, Brenner MK, Rooney C, Krance RA, Roberts WM, Rochester R, Smith CA, Turner V, Sixbey J, Moen R, Boyett JM (1994) Administration of neomycin-resistance-gene-marked EBV-specific cytotoxic T lymphocytes to recipients of mismatched-related or phenotypically similar unrelated donor marrow grafts. Hum Gene Ther 5:381–397.  https://doi.org/10.1089/hum.1994.5.3-381 CrossRefPubMedGoogle Scholar
  125. 125.
    Rooney CM, Ng CYC, Loftin S, Smith CA, Li C, Krance RA, Brenner MK, Heslop HE, Rooney CM, Brenner MK, Brenner MK, Krance RA, Heslop HE (1995) Use of gene-modified virus-specific T lymphocytes to control Epstein-Barr-virus-related lymphoproliferation. Lancet 345:9–13.  https://doi.org/10.1016/S0140-6736(95)91150-2 CrossRefPubMedGoogle Scholar
  126. 126.
    Pappworth IY, Wang EC, Rowe M (2007) The switch from latent to productive infection in Epstein-Barr virus-infected B cells is associated with sensitization to NK cell killing. J Virol 81:474–482.  https://doi.org/10.1128/JVI.01777-06 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Imaging and Pathology, Translational Cell and Tissue Research LabKU LeuvenLeuvenBelgium
  2. 2.Department of PathologyUniversity Hospitals UZ LeuvenLeuvenBelgium

Personalised recommendations