Compositional variations of chromian spinels from peridotites of the Spontang ophiolite complex, Ladakh, NW Himalayas, India: petrogenetic implications

  • Mallika K. JonnalagaddaEmail author
  • Nitin R. Karmalkar
  • Mathieu Benoit
  • Michel Gregoire
  • Raymond A. Duraiswami
  • Shivani Harshe
  • Sagar Kamble


The Spontang ophiolite complex exposed along the Indus Tsangpo Suture Zone (ITSZ) represents a fragment of oceanic lithosphere emplaced after the closure of the Neo-Tethyan Ocean. The complex lying south of the ITSZ forms the highest tectonic thrust slice above the Mesozoic–Early Tertiary continental margin in the Ladakh-Zanskar Himalaya. The complex consists of a well-preserved ophiolite sequence dominated by peridotites, gabbros and ultramafic cumulates along with highly tectonized sheeted dykes and pillow lavas. The mantle suite of rocks is represented by minor lherzolites, harzburgites and dunites. Chromian spinel is brown to reddish, and its morphology and textural relationship with coexisting silicates varies with strain. Spinel occurs as blebs and vermicular exsolutions within orthopyroxene to spherical inclusions within olivine, characteristic of which is the elongate holly leaf shape. Chrome spinels are characterized by low TiO2 and high Cr2O3 indicative of their depleted nature. Cr# [= atomic ratio Cr/(Cr + Al)] in the studied spinels are characterized by a small decrease in TiO2 for a larger increase in Cr# consistent with observations for spinels aligned along the Luobusa trend of the Yarlung Zangpo Suture Zone (YZSZ) ophiolites. Variations in Cr-spinel Cr# and Mg# observed in the investigated peridotites may have resulted from a wide range of degrees of mantle melting during their evolution. Mineral and whole-rock chemistry of the Spontang peridotites is characterized by interaction between depleted magma and pre-existing oceanic lithosphere, typical of supra-subduction zone settings. The Spontang peridotites have olivine, clinopyroxene and orthopyroxene compositions similar to those from both abyssal and fore-arc peridotites and display spoon shaped REE profiles characteristic of interaction between LREE-enriched melt, derived from the subducting slab and LREEdepleted mantle residues. Equilibration temperatures calculated for the above rocks indicate that the studied samples represent typical mantle peridotites formed within the spinel stability field.

Key words

Cr-spinel peridotite partial melting ophiolites Spontang 

Supplementary material

12303_2019_1_MOESM1_ESM.docx (45 kb)
Supplementary material, approximately 45 KB.


  1. Abily, B. and Ceuleneer, G., 2013, The dunitic mantle-crust transition zone in the Oman ophiolite: residue of melt-rock interaction, cumulates from high-MgO melts, or both? Geology, 41, 67–70. Scholar
  2. Ahmad, T., Tanaka, T., Sachan, H.K., Asahara, Y., Islam, R., and Khanna, P.P., 2008, Geochemical and isotopic constraints on the age and origin of the Nidar Ophiolitic Complex, Ladakh, India: implications for the Neo-Tethyan subduction along the Indus suture zone. Tectonophysics, 451, 206–224.CrossRefGoogle Scholar
  3. Ahmed H.A., Harbi H.M., and Habtoor A.M., 2012, Compositional variations and tectonic settings of podiform chromitites and associated ultramafic rocks of the Neoproterozoic ophiolite at Wadi Al Hwanet, northwestern Saudi Arabia. Journal of Asian Earth Sciences, 56, 118–134.CrossRefGoogle Scholar
  4. Aitchison, J.C., Badengzhu Davis, A.M., Liu, J., Luo, H., Malpas, J., McDermid, I., Wu, H., Ziabrev, S., and Zhou, M.F., 2000, Remnants of a Cretaceous intra-oceanic subduction system within the Yarlung–Zangbo suture (southern Tibet). Earth and Planetary Science Letters, 183, 231–244.CrossRefGoogle Scholar
  5. Aitchison, J.C., McDermid, I.R.C., Ali, J.R., Davis, A.M., and Zyabrev, S.V., 2007, Shoshonites in southern Tibet record Late Jurassic rifting of a Tethyan intraoceanic island arc. The Journal of Geology, 115, 197–213.CrossRefGoogle Scholar
  6. Anonymous, 1972, Penrose field conference on ophiolites. Geotimes, 17, 24–25.Google Scholar
  7. Arai, S., 1992, Chemistry of chromian spinel in volcanic rocks as a potential guide to magma chemistry. Mineralogical Magazine, 56, 173–184.CrossRefGoogle Scholar
  8. Arai, S., Okamura, H., Kadoshima, K., Tanaka, C., Suzuki, K., and Ishimaru, S., 2011, Chemical characteristics of chromian spinel in plutonic rocks: implications for deep magma processes and discrimination of tectonic setting. Island Arc, 20, 125–137.CrossRefGoogle Scholar
  9. Arai, S., 1994a, Characterization of spinel peridotites by olivine-spinel compositional relationships: review and interpretation. Chemical Geology, 113, 191–204.CrossRefGoogle Scholar
  10. Arai, S., 1994b, Compositional variation of olivine-chromian spinel in Mg-rich magmas as a guide to their residual spinel peridotites. Journal of Volcanological Geothermal Research, 59, 279–293.CrossRefGoogle Scholar
  11. Arif, M. and Jan M.Q., 2006, Petrotectonic significance of the chemistry of chromite in the ultramafic-mafic complexes of Pakistan. Journal of Asian Earth Sciences, 27, 628–646.CrossRefGoogle Scholar
  12. Aswad, K.J., Aziz, N.R., and Koyi, H.A., 2011, Cr-spinel compositions in serpentinites and their implications for the petrotectonic history of the Zagros Suture Zone, Kurdistan Region, Iraq. Geological Magazine, 148, 802–818.CrossRefGoogle Scholar
  13. Baker, M.B. and Beckett, J.R., 1999, The origin of abyssal peridotites: a reinterpretation of constraints based on primary bulk compositions. Earth and Planetary Science Letters, 171, 49–61.CrossRefGoogle Scholar
  14. Barrat, J.A., Keller, F., Amosse, J., Taylor, R.N., Nesbitt, R.W., and Hirata, T., 1996, Determination of rare earth elements in sixteen silicate references by ICP-MS after Tm addition and ion exchange separation. Geostandard Newsletter, 20, 133–139.CrossRefGoogle Scholar
  15. Barrat, J.A., Zanda, B., Moynier, F., Bollinger, C., Liorzou, C., and Bayon, G., 2012, Geochemistry of CI chondrites: major and trace elements, and Cu and Zn isotopes. Geochimica et Cosmochimica Acta, 83, 79–92.CrossRefGoogle Scholar
  16. Barnes, S.J. and Roeder, P.L., 2001, The range of spinel compositions in terrestrial mafic and ultramafic rocks. Journal of Petrology, 42, 2279–2302.CrossRefGoogle Scholar
  17. Barnes S.J., 2000, Chromite in komatiites. II. Modification during greenschist to mid-amphibolite facies metamorphism. Journal of Petrology, 41, 387–409.Google Scholar
  18. Bhat, I.M., Ahmad, T., and Subba Rao, D.V., 2018, Origin and evolution of Suru Valley ophiolite peridotite slice along Indus suture zone, Ladakh Himalaya, India: implications on melt-rock interaction in a subduction-zone environment, Chemie der Erde. Scholar
  19. Bodinier, J.L. and Godard, M., 2007, Orogenic, ophiolitic and abyssal peridotites. In: Holland, H.D. and Turekian, K.K. (eds.), Treatise on Geochemistry. Elsevier, Amsterdam, 2, p. 1–73. Scholar
  20. Bonatti, E. and Michael, P.J., 1989, Mantle peridotites from continental rifts to oceanic basins to subduction zones. Earth Planetary Science Letters, 91, 297–311.CrossRefGoogle Scholar
  21. Brey, G.P. and Köhler, T., 1990, Geothermobarometry in four-phase lherzolites. II. New thermobarometers and practical assessment of existing thermobarometers. Journal of Petrology, 31, 1353–1378.Google Scholar
  22. Choi, S.H., Shervais, J.W., and Mukasa, S.B., 2008, Supra-subduction and abyssal mantle peridotites of the Coast Range ophiolite, California. Contributions to Mineralogy and Petrology, 156, 551–576. Scholar
  23. Colchen, M. and Reuber, I., 1986, Les mélanges ophiolitiques du Zanskar. Himalaya du Ladakh. Comptes rendus de l’Académie des Sciences, Paris, 303, 719–724.Google Scholar
  24. Colchen, M., Reuber, I., Bassoullet, J.R., Bellier, J.R., Blondeau, A., Lys, M., and de Wever, P., 1987, Données biostratigraphiques sur les mélanges ophiolitiques du Zanskar, Himalaya du Ladakh. Comptes rendus de l’Académie des Sciences, Paris, 305, 403–406.Google Scholar
  25. Conrad, W.K. and Kay, R.W., 1984, Ultramafic and mafic inclusions from Adak Island: crystallisation history and implications for the nature of primary magmas and crustal evolution in the Aleutian arc. Journal of Petrology, 25, 88–125.CrossRefGoogle Scholar
  26. Corfield, R.I., Searle, M.P., and Green, O.R., 1999, Photang thrust sheet–An accretionary complex structurally below the Spontang ophiolite constraining timing and tectonic environment of ophiolite obduction, Ladakh Himalaya, NW India. Journal of the Geological Society, 156, 1031–1044.CrossRefGoogle Scholar
  27. Corfield, R.I., Searle, M.P., and Pedersen, R.B., 2001, Tectonic setting, origin, and obduction history of the Spontang ophiolite, Ladakh Himalaya, NW India. Journal of Geology, 109, 715–736.CrossRefGoogle Scholar
  28. Deitrich, V.J., Frank, W., and Honegger, K., 1983, A Jurassic–Cretaceous island arc in the Ladakh-Himalayas. Journal of Volcanology and Geothermal Research, 18, 405–433.CrossRefGoogle Scholar
  29. Dick, H.J.B., 1977a, Evidence of partial melting in the Josephine peridotite. Magma Genesis, 96, 59–62.Google Scholar
  30. Dick, H.J.B., 1977b, Partial melting in the Josephine Peridotite I, the ‘effect on mineral composition and its consequence for geo-barometry and geothermometry. American Journal of Science, 277, 801–832.Google Scholar
  31. Dick, H.J.B. and Bullen, T., 1984, Chromium spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contributions to Mineralogy and Petrology, 86, 54–76.CrossRefGoogle Scholar
  32. Dubois-Côté, V., 2004, Pétrologie et géochimie des ophiolites de la Zone de Suture du Yarlung Zangbo (ZSYZ), Tibet: implications géodynamiques. M.Sc Thesis, Université Laval, Quebec City, 231 p.Google Scholar
  33. Dupuis, C., Hebert, R., Dubois-Côté, V., Guilmette, C., Wang, C.S., Li, Y.L., and Li, Z.J., 2005, The Yarlung Zangbo Suture Zone ophiolitic melange (Southern Tibet): new insights from geochemistry of ultramafic rocks. Journal of Asian Earth Sciences, 25, 937–960.CrossRefGoogle Scholar
  34. Edwards, S.J., 1990, Harzburgites and refractory melts in the Lewis hills massif, Bay of Island ophiolite complex: the base-metals and precious- metals story. Canadian Mineralogist, 28, 537–552.Google Scholar
  35. Evans, B.W. and Frost, B.R., 1975, Chrome-spinel in progressive metamorphism. A preliminary analysis. Geochimica et Cosmochimica Acta, 39, 959–972.CrossRefGoogle Scholar
  36. Fabries, I., 1979, Spinel-olivine geothermometry in peridotites from ultramafic complexes. Contributions to Mineralogy and Petrology, 69, 329–336.CrossRefGoogle Scholar
  37. Fisk, M.R. and Bence, A.E., 1980, Experimental crystallization of chrome spinel in FAMOUS basalt 527-1-1. Earth Planetary Science Letters, 48, 111–123.CrossRefGoogle Scholar
  38. Frank, W., Gansser, A., and Trommsdroff, V., 1977, Geological observations in the Ladakh area (Himalayas). A preliminary report. Schweizerische Mineralogische und Petrographische Mitteilungen, 57, 89–113.Google Scholar
  39. Fuchs, G., 1982, The Geology of Western Zanskar. Jahrbuch Geologisches Bundesanstalt, Vienna, 125, 50 p.Google Scholar
  40. Gansser, A., 1974, The ophiolitic mélange, a world-wide problem on Tethyan examples. Eclogae Geologicae Helvetiae, 67, 479–507.Google Scholar
  41. Gasparik, T., 1987, Orthopyroxene thermometry in simple and complex systems. Contributions to Mineralogy and Petrology, 96, 357–370.CrossRefGoogle Scholar
  42. Gaetani, G.A. and Grove, T.L., 1998, The influence of water on melting of mantle peridoite. Contributions to Mineralogy and Petrology, 131, 323–346.CrossRefGoogle Scholar
  43. Girardeau, J., Marcoux, J., and Zao, Y., 1984, Lithologic and tectonic environment of the Xigaze ophiolite (Yarlung Zangbo suture zone, Southern Tibet, China): kinematics of its emplacement. Eclogea Geologicae Helvetiae, 77, 153–170.Google Scholar
  44. Girardeau, J., Mercier, J.-C.C., and Wang, X., 1985a, Petrology of the mafic rocks of the Xigaze ophiolites, Tibet: implications for the genesis of the oceanic lithosphere. Contributions to Mineralogy and Petrology, 90, 309–321.Google Scholar
  45. Girardeau, J., Mercier, J.-C.C., and Zao, Y., 1985b, Structure of the Xigaze ophiolite, Yarlung Zangbo suture zone, southern Tibet, China: genetic implications, Tectonics, 4, 267–288.Google Scholar
  46. Godard, M., Jousselin, D., and Bodinier, J. L., 2000, Relationships between geochemistry and structure beneath a palaeo-spreading centre: a study of the mantle section in the Oman ophiolite. Earth Planetary Science Letters, 180, 133–148.CrossRefGoogle Scholar
  47. González-Jiménez, J.M., Proenza, J.A., Gervilla, F., Melgarejo, J.C., Blanco-Moreno, J.A., Ruiz-Sánchez, R., and Griffin, W.L., 2011, High-Cr and high-Al chromitites from the Sagua de Tánamo district, Mayarí-Cristal ophiolitic massif (eastern Cuba): constraints on their origin from mineralogy and geochemistry of chromian spinel and platinum-group elements. Lithos, 125, 101–121.CrossRefGoogle Scholar
  48. Göpel, C., Allègre, C.J., and Xu, R.H., 1984, Lead isotopic study of the Xigaze ophiolite (Tibet): the problem of the relationship between magmatites (gabbros, dolerites, lavas) and tectonites (harzburgites). Earth and Planetary Science Letters, 69, 301–310.CrossRefGoogle Scholar
  49. Grégoire, M., Lorand, J.P., Cottin, J.Y., Giret, A., Mattielli, N., and Weis, D., 1997, Xenoliths evidence for a refractory oceanic mantle percolated by basaltic melts beneath the Kerguelen archipelago. European Journal of Mineralogy, 9, 1085–1100.CrossRefGoogle Scholar
  50. Haggerty, S.E., 1989, Upper mantle opaque mineral stratigraphy and the genesis of metasomatites and alkali-rich melts. In: Ross, J. (ed.), Kimberlites and Related Rocks: 2. Their Mantle/Crust Setting, Diamonds and Diamond Exploration. Geological Society of Australia, Special Publications, 14, p. 687–699.Google Scholar
  51. Haggerty, S.E., 1991, Oxide mineralogy of the upper mantle. Reviews in Mineralogy, 25, 355–416.Google Scholar
  52. Hébert, R., Huot, F., Wang, C.S., and Liu, Z.F., 2003, Yarlung Zangbo ophiolites, southern Tibet revisited: geodynamic implications from the mineral record. In: Dilek, Y. and Robinson, P.T., (eds.), Ophiolites in Earth History. Geological Society, London, Special Publications, 218, p. 165–190. Scholar
  53. Hellebrand. E., Snow, J.E., Dick, H.J.B., and Hofmann, A.W., 2001, Coupled major and trace elements as indicator of the extent of melting in mid-ocean-ridge peridotites. Nature, 410, 677–681.CrossRefGoogle Scholar
  54. Hellebrand, E., Snow, J.E., Hoppe, P., and Hofmann, A., 2002, Garnetfield melting and late stage refertilization in ‘residual’ abyssal peridotites from the Central Indian Ridge. Journal of Petrology, 43, 2305–2338.CrossRefGoogle Scholar
  55. Hirose, K. and Kawamoto, T., 1995, Hydrous partial melting of lherzolite at 1 Gpa: the effect of H2O on the genesis of basaltic magmas. Earth and Planetary Science Letters, 133, 463–473.CrossRefGoogle Scholar
  56. Honegger, K., Dietrich, V., Frank, W., Gansser, A., Thoni, M., and Trommsdorff, V., 1982, Magmatism and metamorphism in the Ladakh Himalayas (the Indus–Tsangpo Suture Zone). Earth and Planetary Science Letters, 60, 253–292.CrossRefGoogle Scholar
  57. Irvine, T.N., 1965, Chromian spinel as a petrogenetic indicator; Part 1, Theory. Canadian Journal of Earth Science, 2, 648–671.CrossRefGoogle Scholar
  58. Irvine, T.N., 1967, Chromian spinel as a petrogenetic indicator; Part 2, Petrologic Applications. Canadian Journal of Earth Science, 4, 71–103.CrossRefGoogle Scholar
  59. Ishii, T., Robinson, P.T., Maekawa, H., and Fiske, R., 1992, Petrological studies of peridotites from diapiric serpentinite seamounts in the Izu-Mariana fore-arc, Leg 125. In: Fryer, P., Pearce, J.A., and Stokking, L.B. (eds.), Proceedings of the Ocean Drilling Program. Scientific Results, College Station, 125, p. 445–485. Scholar
  60. Jan, M.Q., Windley, B.F., and Khan, A., 1985, The Waziristan ophiolite, Pakistan–General geology and chemistry of chromite and associated phases. Economic Geology, 80, 294–306.CrossRefGoogle Scholar
  61. Jan, M.Q. and Windley, B.F., 1990, Chromian spinel-silicate chemistry in ultramafic rocks of the Jijal complex, northwest Pakistan, Journal of Petrology, 31, 667–715.Google Scholar
  62. Johnson, K.T.M., Dick, H.J.B., and Shimizu, N., 1990, Melting in the oceanic upper mantle: an ion microprobe study of diopsides in abyssal peridotites. Journal of Geophysical Research, 95, 2661–2678.CrossRefGoogle Scholar
  63. Juteau, T., Berger, E., and Cannat, M., 1990, Serpentinized, residual mantle peridotites from the M.A.R. median valley, ODP hole 670A (21°10'N, 45°02'W): primary mineralogy and geothermometry. In: Detrick, R., Honnorez, J., Bryan, W.B., and Juteau, T. (eds.), Proceedings of the Ocean Drilling Program. Scientific Results, College Station, 106, p. 27–45. Scholar
  64. Kakar, M.I., Mahmood, K., Khan, M., Kasi, A.K., and Manan, R.A., 2013, Petrology and geochemistry of gabbros from the Muslim Bagh Ophiolite: implications for their petrogenesis and tectonic setting. Journal of Himalayan Earth Sciences, 46, 19–30.Google Scholar
  65. Kamenetsky, V.S., Crawford, A.J., and Meffre, S., 2001, Factors controlling chemistry of magmatic spinel: an empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks. Journal of Petrology, 42, 655–671.CrossRefGoogle Scholar
  66. Karmalkar, N.R., Dessai, A.G., Duraiswami, R.A., and Leblanc, M., 1995, Evidence of garnet to spinel peridotite transition in the harzburgites of the Indus ophiolite belt: an indication of their mantle origin. Current Science, 69, 767–770.Google Scholar
  67. Karmalkar, N.R., Dessai, A.G., and Duraiswami, R.A., 1997, Morphological and chemical changes in spinels and their bearing on the cumulate or residual nature of the peridotites from the Indus ophiolite, India. The Indian Mineralogist, 31, 12–23.Google Scholar
  68. Kelemen, P.B. and Sonnenfeld, M.D., 1983, Stratigraphy, structure, petrology and local tectonics, Central Ladakh, NW Himalaya. Schweizerische Mineralogische und Petrographische Mitteilungen, 63, 267–287.Google Scholar
  69. Kelemen, P.B., Reuber, I., and Fuchs, G., 1988, Structural evolution and sequence of thrusting in the High Himalayan, Tibetan-Tethys and Indus Suture zones of Zanskar and Ladakh, Western Himalaya. Journal of Structural Geology, 10, 129–130.CrossRefGoogle Scholar
  70. Kelemen, P.B., 1990, Reaction between ultramafic rock and fractionating basaltic magma I. phase relations, the origin of calc-alkaline magma series, and the formation of discordant dunite. Journal of Petrology, 31, 51–98.CrossRefGoogle Scholar
  71. Kelemen, P.B., Dick, H.J.B., and Quick, J.E., 1992, Formation of harzburgite by pervasive melt/rock reaction in the upper mantle. Nature, 358, 635–641.CrossRefGoogle Scholar
  72. Kelemen, P.B., Hirth, G., Shimizu, N., Spiegelman, M., and Dick, H.J.B., 1997, A review of melt migration processes in the adiabatically upwelling mantle beneath oceanic spreading ridges. Philosophical Transactions of the Royal Society of London, 355, 283–318.CrossRefGoogle Scholar
  73. Kepezhinskas, P.K., Defant, M.J., and Drummond, M.S., 1995, Na metasomatism in the island-arc mantle by slab melt-peridotite interaction: evidence from mantle xenoliths in the north Kamchatka arc. Journal of Petrology, 36, 1505–1527. petrology.a037263Google Scholar
  74. Kubo, K., 2002, Dunite formation processes in highly depleted peridotite: case study of the Iwanaidake peridotite, Hokkaido, Japan. Journal of Petrology, 43, 423–448.CrossRefGoogle Scholar
  75. Lippard, S.J., Shelton, A.W., and Gass, I.G. 1986, The Ophiolites of Northern Oman. Geological Society, London, Memoirs, 11, Boston, 178 p.Google Scholar
  76. Maheo, G., Bertrand, H., Guillot, S., Villa, I.M., Keller, F., and Capiez, P., 2004, The South Ladakh ophiolites (NW Himalaya, India): an intraoceanic tholeiitic arc origin with implication for the closure of the Neo-Tethys. Chemical Geology, 203, 273–303.CrossRefGoogle Scholar
  77. McDermid, I.R.C., Aitchison, J.C., Davis, A.M., Harrison, T.M., and Grove, M., 2002, The Zedong Terrane: a Late Jurassic intra-oceanic magmatic arc within the Yarlung-Tsangpo Suture Zone, Southeastern Tibet. Chemical Geology, 187, 267–277.CrossRefGoogle Scholar
  78. Mercier, J.C.C. and Nicolas, A., 1975, Textures and fabrics of uppermantle peridotites as illustrated by xenoliths from basalts. Journal of Petrology, 16, 454–487.CrossRefGoogle Scholar
  79. Miller, C., Thoeni, M., Frank, W., Schuster, R., Melcher, F., Meisel, T., and Zanetti, A., 2003, Geochemistry and tectonomagmatic affinity of the Yungbwa Ophiolite, SW Tibet. Lithos, 66, 155–172.CrossRefGoogle Scholar
  80. Morimoto, N., Fabries, J., Ferguson, A.K., Ginzburg, I.V., Ross, M., Seifert, F.A., Zussman, J., Aoki, K., and Gottardi, G., 1988, Nomenclature of pyroxenes. American Mineralogist, 73, 1123–1133.Google Scholar
  81. Nicolas, A., Girardeau, J., Marcoux, J., Dupré, B., Wang, X.B., Cao, Y.G., Zeng, H.X., and Xiao, X.C., 1981, The Xigaze ophiolite (Tibet): a peculiar oceanic lithosphere. Nature, 294, 414–417.CrossRefGoogle Scholar
  82. Niu, Y., Langmuir, C.H., and Kinzler, R.J., 1997, The origin of abyssal peridotites: a new perspective. Earth and Planetary Science Letters, 152, 251–265.CrossRefGoogle Scholar
  83. Ohara, Y. and Ishii, T., 1998, Peridotites from the southern Mariana forearc: heterogeneous fluid supply in the mantle wedge. Island Arc, 7, 541–558.CrossRefGoogle Scholar
  84. Ohara, Y., Stern, R.J., Ishii, T., Yurimoto, H., and Yamazaki, T., 2002, Peridotites from the Mariana trough: first look at the mantle beneath an active back-arc basin. Contributions to Mineralogy and Petrology, 143, 1–18.CrossRefGoogle Scholar
  85. Ozawa, K., 1989, Stress-induced Al-Cr zoning of spinel in deformed peridotites. Nature, 338, 141–144. Scholar
  86. Paktunc, A.D., 1990, Origin of podiform chromite deposits by multistage melting, melt segregation and magma mixing in the upper mantle. Ore Geology Review, 5, 211–222.CrossRefGoogle Scholar
  87. Parkinson, I.J. and Pearce, J.A., 1998, Peridotites from the Izu-Bonin- Mariana forearc (ODP Leg 125): evidence for mantle melting and melt-mantle interactions in a supra-subduction zone setting. Journal of Petrology, 39, 1577–1618. Scholar
  88. Pearce, J.A., Lippard, S.J., and Roberts, S., 1984, Characteristics and tectonic significance of supra-subduction ophiolites. In: Kokelaar, B.P. and Howells, M.F. (eds.), Marginal Basin Geology. Geological Society, London, Special Publications, 16, p. 777–794.Google Scholar
  89. Pearce, J.A., Barker, P.F., Edwards, S.J., Parkinson, I.J., and Leat, P.T., 2000, Geochemistry and tectonic significance of peridotites from the South Sandwich arc-basin system, South Atlantic. Contributions to Mineralogy and Petrology, 139, 36–53.CrossRefGoogle Scholar
  90. Pedersen, R.B., Searle, M.P., and Corfield, R.I., 2001, U-Pb Zircon ages from the Spontang ophiolite, Ladakh Himalaya. Journal of the Geological Society, 158, 513–520.CrossRefGoogle Scholar
  91. Proenza, J.A., Gervilla, F., Melgarejo, J.C., and Bodinier, J.L., 1999, Al and Cr-rich chromitites from the Mayarí-Baracoa ophiolitic belt (eastern Cuba): consequence of interaction between volatile-rich melts and peridotites in suprasubduction mantle. Economic Geology, 94, 547–566.CrossRefGoogle Scholar
  92. Reuber, I., Colchen, M., and Mevel, C., 1992, The Spontang ophiolite and ophiolitic mélanges of the Zanskar, N.W. Himalaya, tracing the evolution of the closing Tethys in the upper Cretaceous to the Early Tertiary. In: Sinha, A.K. (ed.), Himalayan Orogen and Global Tectonics. International Lithosphere Program, A.A. Balkema, Rotterdam, 197, p. 235–266.Google Scholar
  93. Reuber, I., 1986, Geometry of accretion and oceanic thrusting of the Spontang ophiolite. Ladakh Himalaya. Nature, 321, 592–596.CrossRefGoogle Scholar
  94. Reibel, G. and Reuber, I., 1982, La klippe ophiolitique de Spongtang- Photaksàr (Himalaya du Ladakh); une ophiolite sans cumulais. Comptes rendus de l’Académie des Sciences, 294, 557–562.Google Scholar
  95. Robertson, A., 2000, Formation of mélanges in the Indus Suture Zone, Ladakh Himalaya by successive subduction-related, collisional, postcollisional processes during Late Mesozoic–Late Tertiary time. In: Khan, M.A., Treolar, P.J., Searle, M.P., and Jan, Q. (eds.), Tectonics of the Nangat Parbat Syntaxis and the Western Himalaya. Geological Society, London, Special Publications, 170, p. 333–374. Scholar
  96. Rospabe, M., Ceuleneer, G., Benoit, M., Abily, B., and Pinet, P., 2017, Origin of the dunitic mantle-crust transition zone in the Oman ophiolite: the interplay between percolating magmas and high temperature hydrous fluids. Geology, 45, 471–474.CrossRefGoogle Scholar
  97. Rospabe, M., Benoit, M., and Candaudap, F., 2018, Determination of trace element mass fractions in ultramafic rocks by HR-ICP- MS: a combined approach using a direct digestion/dilution method and pre-concentration by co-precipitation. Geostandard Geoanalytical Research, 42, 115–129.CrossRefGoogle Scholar
  98. Rospabe, M., Benoit, M., Ceuleneer, G., Hodel, F., and Kaczmarek, MA., 2018, Extreme geochemical variability through the dunitic transition zone of the Oman ophiolite: implications for melt/fluid-rock reactions at Moho level beneath oceanic spreading centers. Geochimica et Cosmochimica Acta, 234, 1–23.CrossRefGoogle Scholar
  99. Sarwar, G., 1992, Tectonic setting of the Bela Ophiolites, southern Pakistan. Tectonophysics, 207, 359–381.CrossRefGoogle Scholar
  100. Searle, M.P., 1986, Structural evolution and sequence of thrusting in the High Himalayan, Tibetan-Tethys and Indus suture zones of Zanskar and Ladakh, Western Himalaya. Journal of Structural Geology, 8, 923–936.CrossRefGoogle Scholar
  101. Searle, M.P., Cooper, D.J.W. and Rex, A.J., 1988, Collision tectonics of the Ladakh-Zanskar Himalaya. Philosophical Transactions of the Royal Society of London, 326,117–15.Google Scholar
  102. Singh, A.K., 2013, Petrology and geochemistry of abyssal peridotites from the Manipur ophiolite complex, Indo-Myanmar Orogenic Belt, Northeast India: implication for melt generation in mid-oceanic ridge environment. Journal of Asian Earth Science, 66, 258–276. Scholar
  103. Singh, A.K. and Singh, R.B., 2013, Genetic implications of Zn- and Mnrich Cr-spinels in serpentinites of the Tidding Suture Zone, eastern Himalaya, NE India. Geological Journal, 48, 22–38.CrossRefGoogle Scholar
  104. Stern, R.J., 2004, Subduction initiation: spontaneous and induced. Earth and Planetary Science Letters, 226, 275–292.CrossRefGoogle Scholar
  105. Srikantia, S.V. and Razdan, M.L., 1981, Shilakong ophiolite nappe of Zanskar Mountains, Ladakh Himalaya. Journal of the Geological Society of India, 22, 227–234.Google Scholar
  106. Uysal, I., Kaliwoda, M., Karsli, O., Tarkian, M., Sadiklar, M.B., and Ottley, C.J., 2007, Compositional variations as a result of partial melting and melt-peridotite interaction in an upper mantle section from the Ortaca area, southwestern Turkey. Canadian Mineralogist, 45, 1471–1493.CrossRefGoogle Scholar
  107. Uysal, I., Ersoy, E.Y., Karslı, O., Dilek, Y., Sadıklar, M.B., Ottley, C.J., Tiepolo, M., and Meisel, T., 2012, Coexistence of abyssal and ultradepleted SSZ type mantle peridotites in a Neo-Tethyan Ophiolite in SW Turkey: constraints from mineral composition, whole-rock geochemistry (major-trace-REE-PGE), and Re-Os isotope systematics. Lithos, 132, 50–69.CrossRefGoogle Scholar
  108. Xia, B., Yu, H.X., Chen, G.W., Qi, L., Zhao, T.P., and Zhou, M.F., 2003, Geochemistry and tectonic environment of the Dagzhuka ophiolite in the Yarlung-Zangbo suture zone, Tibet. Geochemical Journal, 37, 311–324.CrossRefGoogle Scholar
  109. Yokoyama, T., Makishima, A., and Nakamura, E., 1999, Evaluation of the co-precipitation of incompatible trace elements with fluoride during silicate rock dissolution by acid digestion. Chemical Geology, 157, 175–187.CrossRefGoogle Scholar
  110. Zaccarini, F., Garuti, G., Proenza, J.A., Campos, L., Thalhammer, O.A., Aiglsperger, T., and Lewis, J.F., 2011, Chromite and platinum group elements mineralization in the Santa Elena Ultramafic Nappe (Costa Rica): geodynamic implications. Geologica Acta, 9, 407–423. Scholar
  111. Zaigham, N.A. and Mallick, K.A., 2000, Bela ophiolite zone of southern Pakistan: tectonic setting and associated mineral deposits. Geological Society of America Bulletin, 112, 478–489.CrossRefGoogle Scholar
  112. Zhou, M.F., Robinson, P.T., and Malpas, J., 1996, Podiform chromitites in the Luobusa ophiolite (southern Tibet): implications for meltrock interaction and chromite segregation in the upper mantle. Journal of Petrology, 37, 3–21.CrossRefGoogle Scholar
  113. Zhou, M. and Robinson, P.T., 1997, Origin and tectonic environment of podiform chromite deposits. Economic Geology, 92, 259–262.CrossRefGoogle Scholar
  114. Zhou, M.F., Sun, M., Keays, R.R., and Kerrich, R.W., 1998, Controls on platinum-group elemental distributions of podiform chromitites: a case study of high-Cr and high-Al chromitites from Chinese orogenic belts. Geochimica et Cosmochimica Acta, 62, 677–688.CrossRefGoogle Scholar
  115. Zhou, M.F., Robinson, P.T., Malpas, J., Edwards, S.J., and Qi, L., 2005, REE and PGE geochemical constraints on the formation of dunites in the Luobusa Ophiolite, southern Tibet. Journal of Petrology, 46, 615–639.CrossRefGoogle Scholar

Copyright information

© The Association of Korean Geoscience Societies and Springer 2019

Authors and Affiliations

  • Mallika K. Jonnalagadda
    • 1
    Email author
  • Nitin R. Karmalkar
    • 1
  • Mathieu Benoit
    • 2
  • Michel Gregoire
    • 2
  • Raymond A. Duraiswami
    • 1
  • Shivani Harshe
    • 1
  • Sagar Kamble
    • 1
  1. 1.Department of GeologySavitribai Phule Pune UniversityPuneIndia
  2. 2.Géosciences Environnement Toulouse, CNRS-IRD-Université Paul SabatierObservatoire Midi PyrénéesToulouseFrance

Personalised recommendations