Geochemistry and REE content of beach sands along the Atticocycladic coastal zone, Greece

Article

Abstract

Twenty-eight beach sand samples from the shorelines of Aegean islands adjacent to the plutonic rocks of the Atticocycladic zone were analyzed for major and rare earth element (REE) contents. Results are compared with the adjacent plutonic rocks, in order to determine relative enrichments or depletions and assess the potential for REE exploitation. Among the samples, several are significantly enriched in REE, being deposits of heavy minerals and their concentrations are controlled by the sea waves and local winds. These samples contain Th, U and REE rich minerals such as zircon, xenotime and allanite. The available geochemical characteristics were also used to confirm the parent rocks of the beach sands. The heavy fractions (total, total magnetic and total non-magnetic) of the beach sands are very well correlated with the Heavy REE (HREE) concentrations. Among the minerals of the heavy magnetic fraction, allanite seems to control the REE content in the heavy mineral-enriched samples, while from the heavy non-magnetic fraction, zircon controls mainly the HREE fraction. One site from Mykonos and 3 from Naxos could have potential for REE exploitation as they present the highest ΣREE and ΗREE contents than other beach sand placers measured in Greece (Kavala, Sithonia, Maronia, Samothraki, NE Chalkidiki).

Keywords

beach sands heavy minerals REE provenance Atticocycladic zone 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alam, M.N., Chowdhury, M.I., Kamal, M., Ghose, S., Islam, M.N., Mustafa, M.N., Miah, M.M.H., and Ansary, M.M., 1999, The 226Ra, 232Th and 40K activities in beach sand minerals and beach soils of Cox’s Bazar, Bangladesh. Journal of Environmental Radioactivity, 46, 243–250CrossRefGoogle Scholar
  2. Altherr, R. and Siebel, W., 2002, I-type plutonism in a continental back arc setting, Miocene granitoids and monzonites from the central Aegean Sea, Greece. Contributions to Mineralogy and Petrology, 143, 397–415.CrossRefGoogle Scholar
  3. Altherr, R., Henjes-Kunst, F.J., Matthews, A., Friedrichsen, H., and Hansen, B.T., 1988, O-Sr isotopic variations in Miocene granitoids from the Aegean, evidence for an origin by combined assimilation and fractional crystallisation. Contributions to Mineralogy and Petrology, 100, 528–541.CrossRefGoogle Scholar
  4. Altherr, R., Kreuzer, H., Wendt, I., Lenz, H., Wagner, G.A., Keller, J., Harre, W., and Hohndorf, A., 1982, A late Oligocene/early Miocene high temperature belt in the Attic-Cycladic crystalline complex (SE Pelagonian, Greece). Geologisches Jahrbuch, E23, 97–164.Google Scholar
  5. Armstrong-Altrin, J.S., 2009, Provenance of sands from Cazones, Acapulco, and Bahía Kino beaches, Mexico. Revista Mexicana de Ciencias Geológicas, 26, 764–782.Google Scholar
  6. Armstrong-Altrin, J.S., Lee, Y.I., Kasper-Zubillaga, J.J., Carranza-Edwards, D.G., Eby, G.N., Balaram, V., and Cruz-Ortiz, N.L., 2012, Geochemistry of beach sands along the western Gulf of Mexico, Mexico, Implication for provenance. Chemie der Erde-Geochemistry, 72, 345–362CrossRefGoogle Scholar
  7. Armstrong-Altrin, J.S., Nagarajan, R., Madhavaraju, J., Rosalez-Hoz, L., Lee, Y.I. Balaram, V., Cruz-Martinez, A., and Avila-Ramirez, G., 2013, Geochemistry of the Jurassic and upper Cretaceous shales from the Molango Region, Hidalgo, Eastern Mexico, implications of source-area weathering, provenance, and tectonic setting. C. R. Geosciences, 345, 185–202.CrossRefGoogle Scholar
  8. Armstrong-Altrin, J.S., Nagarajan, R., Lee, Y.I., Kasper-Zubillaga, J.J., and Córdoba-Saldaña, L.P., 2014, Geochemistry of sands along the San Nicolás and San Carlos beaches, Gulf of California, Mexico: implications for provenance and tectonic setting. Turkish Journal of Earth Sciences, 23, 533–558.CrossRefGoogle Scholar
  9. Armstrong-Altrin, J.S. and Natalhy-Pineda, O., 2014, Microtextures of detrital sand grains from the Tecolutla, Nautla, and Veracruz beaches, western Gulf of Mexico, Mexico: implications for depositional environment and palaeoclimate. Arabian Journal of Geosciences, 7, 4321–4333.CrossRefGoogle Scholar
  10. Armstrong-Altrin, J.S., 2015, Evaluation of two multidimensional discrimination diagrams from beach and deep-sea sediments from the Gulf of Mexico and their application to Precambrian clastic sedimentary rocks. International Geology Review, 57, 1446–1461.CrossRefGoogle Scholar
  11. Armstrong-Altrin, J.S., Machain-Castillo, M.L., Rosales-Hoz, L., Carranza-Edwards, A., Sanchez-Cabeza, J.A., and Ruiz-Fernandez, A.C., 2015a, Provenance and depositional history of continental slope sediments in the Southwestern Gulf of Mexico unraveled by geochemical analysis. Continental Shelf Research, 95, 15–26.CrossRefGoogle Scholar
  12. Armstrong-Altrin, J.S., Nagarajan, R., Balaram, V., and Natalhy-Pineda, O., 2015b, Petrography and geochemistry of sands from the Chachalacas and Veracruz beach areas, western Gulf of Mexico, Mexico: constraints on provenance and tectonic setting. Journal of South American Earth Sciences, 64, 199–216.CrossRefGoogle Scholar
  13. Armstrong-Altrin, J.S. and Machain-Castillo, M.L., 2016, Mineralogy, geochemistry, and radiocarbon ages of deep sea sediments from the Gulf of Mexico, Mexico. Journal of South American Earth Sciences, 71, 182–200.CrossRefGoogle Scholar
  14. Armstrong-Altrin, J.S., Lee, Y.I., Kasper-Zubillaga, J.J., and Trejo-Ramirez, E., 2017, Mineralogy and geochemistry of sands along the Manzanillo and El Carrizal beach areas, southern Mexico, implications for palaeoweathering, provenance and tectonic setting. Geological Journal, 52, 559–582.CrossRefGoogle Scholar
  15. Armstrong-Altrin, J.S., Ramos-Vázquez, M.A., Zavala-León, A.C., and Montiel-García, P.C., 2018, Provenance discrimination between Atasta and Alvarado beach sands, western Gulf of Mexico, Mexico: constraints from detrital zircon chemistry and U-Pb geochronology. Geological Journal. DOI 10.1002/gj.3122Google Scholar
  16. Buick, I.S., 1991, The late Alpine evolution of an extensional shear zone, Naxos, Greece. Journal of the Geological Society, 148, 93–103.CrossRefGoogle Scholar
  17. Chakhmouradian, A.R. and Wall, F., 2012, Rare earth elements, minerals, mines, magnets (and more). Elements, 8, 333–340.CrossRefGoogle Scholar
  18. Dawood, Y.H. and Abd El Naby, H.H., 2007, Mineral chemistry of monazite from the black sand deposits, northern Sinai, Egypt, a provenance perspective. Mineralogical Magazine, 71, 441–458.CrossRefGoogle Scholar
  19. Durr, S., Keller, J., Okrusch, M., and Seidel, E., 1978, The median Aegean crystalline belt: Stratigraphy, structure, metamorphism, magmatism. In: Closs, H., Roeder, D.H., and Schmidt, K. (eds.), Alps, Appenines, Hellenides. Inter-Union Commission on Geodynamics scientific report No. 38, Schweizerbart, Stuttgart, p. 455–77.Google Scholar
  20. Folk, R.L. and Ward, W.C., 1957, Brazos river bar, a study of significance of grain size parameters. Journal of Sedimentary Petrology, 27, 3–26.CrossRefGoogle Scholar
  21. Filippidis, A., Misaelides, P., Clouvas, A., Godelitsas, A., Barbayiannis, N., and Anousis, I., 1997, Mineral, chemical and radiological investigation of a black sand at Touzla Cape, near Thessaloniki, Greece. Environmental Geochemistry and Health, 19, 83–88.CrossRefGoogle Scholar
  22. Floyd, P.A. and Leveridge, B.E., 1987, Tectonic environments of the Devonian Gramscatho basin, south Cornwall, framework mode and geochemical evidence from turbidite sandstones. Journal of the Geological Society, 144, 531–542.CrossRefGoogle Scholar
  23. Freitas, A.C. and Alencar, A.S., 2004, Gamma dose rates and distribution of natural radionuclides in sand beaches–Ilha Grande, South eastern Brazil. Journal of Environmental Radioactivity, 75, 211–223.CrossRefGoogle Scholar
  24. Hawkesworth, C.J. and Morrison, M.A., 1978, A reduction in 87Sr/86Sr during basalt alteration. Nature, 276, 381–383.CrossRefGoogle Scholar
  25. Henjes-Kunst, F., Altherr, R., Kreuzer, H., and Hansen, B.T., 1988, Disturbed U-Th-Pb-systematics of young zircons and uranothorites, the case of the Miocene Aegean granitoids (Greece). Chemical Geology, 73, 125–145.Google Scholar
  26. Hill, I.G., Meighan, I.G., and Worden, R.H., 2000, Yttrium, the immobility-mobility transition during basaltic weathering. Geology, 28, 923–926.CrossRefGoogle Scholar
  27. Hoefel, F. and Elgar, S., 2003, Wave-induced sediment transport and sandbar migration. Science, 299, 1885–1887.CrossRefGoogle Scholar
  28. Honda, M., Yabuki, S., and Shimizu, H., 2004, Geochemical and isotopic studies of aeolian sediments in China. Sedimentology, 51, 211–230.CrossRefGoogle Scholar
  29. Iglseder, C., Grasemann, B., Schneider, D.A., Petrakakis, K., Miller, C., Klötzli, U.S., Thöni, M., Zámolyi, A., and Rambousek, C., 2009, I and S-type plutonism on Serifos (W-Cyclades, Greece). Tectonophysics, 473, 69–83.CrossRefGoogle Scholar
  30. Kasper-Zubillaga, J.J., Acevedo-Vargas, B., Bermea, O.M., and Zamora, G.O., 2008, Rare earth elements of the Altar Desert dune and coastal sands, Northwestern Mexico. Chemie der Erde-Geochemistry, 68, 45–59.CrossRefGoogle Scholar
  31. Kynicky, J., Smith, M.P., and Xu C., 2012, Diversity of rare earth deposits, the key example of China. Elements, 8, 361–367.CrossRefGoogle Scholar
  32. Lykousis, V., 2001, Subaqueous bedforms on the Cyclades Plateau (NE Mediterranean)–evidence of Cretan deep-water formation? Continental Shelf Research, 21, 495–507.CrossRefGoogle Scholar
  33. Mastrakas, N., 2006, Tinos pluton and associated skarn formations. Ph.D. Thesis, University of Patras, Patras, 227 p. (In Greek)Google Scholar
  34. McLennan, S.M., 1989, Rare Earth Elements in sedimentary rocks, influence of provenance and sedimentary processes. Reviews in Mineralogy, 21, 169–200.Google Scholar
  35. McLennan, S.M., Taylor, S.R., McCulloch, M.T., and Maynard, J.B., 1990, Geochemical and Nd-Sr isotopic composition of deep-sea turbidites: crustal evolution and plate tectonic associations. Geochimica et Cosmochimica Acta, 54, 2015–2050.CrossRefGoogle Scholar
  36. McLennan, S.M., Hemming, S., McDanniel, D.K., and Hanson, G.N., 1993, Geochemical approaches to sedimentation, provenance, and tectonics. In, Johnsson, M.J. and Basu, A. (eds.), Processes Controlling the Composition of Clastic Sediments. Geological Society of America, Special Paper, 285, p. 21–40.CrossRefGoogle Scholar
  37. McLennan, S.M., 2001, Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochemistry Geophysics Geosystems, 2. DOI 10.1029/2000GC000109Google Scholar
  38. Menant, A., Jolivet, L., Augier, R., and Skarpelis, N., 2013, The North Cycladic detachment system and associated mineralization, Mykonos, Greece: insights on the evolution of the Aegean domain. Tectonics, 32, 1–20.CrossRefGoogle Scholar
  39. Mohanty, A.K., Das, S.K., Vijayan, V., Sengupta, D., and Saha, S.K., 2003a, Geochemical studies of monazite sands of Chhatrapur beach placer deposit of Orissa, India by PIXE and EDXRF method. Nuclear Instrumental Methods B, 211, 145–154.CrossRefGoogle Scholar
  40. Mohanty, A.K., Vijayan, V., Sengupta, D. Das, S.K., and Saha, S.K., 2003b, Geochemical characteristics of ilmenite sands of Chhatrapur beach placer deposit of Orissa, India, A PIXE study. International Journal of PIXE, 13, 121–13.CrossRefGoogle Scholar
  41. Mudd, G.M. and Jowitt, S.M., 2016, Rare earth elements from heavy mineral sands, assessing the potential of a forgotten resource. Applied Earth Science, 125, 107–113.CrossRefGoogle Scholar
  42. Nagarajan, R., Madhavaraju, J., Nagendra, R., Armstrong-Altrin, J.S., and Moutte, J., 2007a, Geochemistry of Neoproterozoic shales of Rabanpalli formation, Bhima basin, northern Karnataka, southern India: implications for provenance and paleoredox conditions. Revista mexicana de ciencias geológicas, 24, 150–160.Google Scholar
  43. Nagarajan, R., Armstrong-Altrin J.S., Nagendra, R., Madhavaraju, J., and Moutte, J., 2007b, Petrography and geochemistry of terrigenous sedimentary rocks in the Neoproterozoic Rabanpalli Formation, Bhima Basin, Southern India: implications for paleoweathering condition, provenance, and source rock composition. Journal of the Geological Society, 70, 297–312.Google Scholar
  44. Ohta, T., 2004, Geochemistry of Jurassic to earliest Cretaceous deposits in the Nagato Basin, SW Japan: implication of factor analysis to sorting effects and provenance signatures. Sedimentary Geology, 171, 159–180.CrossRefGoogle Scholar
  45. Papadopoulos, A., 2011, Natural radioactivity in relation to mineralogy, geochemistry of uranium and thorium of magmatic rocks from Greece: contribution to the use of natural building materials. Ph.D. Thesis, Aristotle University of Thessaloniki, Thessaloniki, 283 p. (In Greek)Google Scholar
  46. Papadopoulos, A., Christofides, G., Koroneos, A., and Stoulos, S., 2014, Natural radioactivity distribution and gamma radiation exposure of beach sands from Sithonia Peninsula. Central European Journal of Geosciences, 6, 229–242.Google Scholar
  47. Papadopoulos, A., Christofides, G., Pe-Piper, G., Koroneos, A., and Papadopoulou, L. 2015a, Geochemistry of beach sands from Sithonia Peninsula (Chalkidiki, Northern Greece). Mineralogy and Petrology, 109, 53–66.CrossRefGoogle Scholar
  48. Papadopoulos, A., Christofides, G., Koroneos, A., and Hauzenberger, C., 2015b, U, Th and REE content of heavy minerals from beach sand samples of Sithonia Peninsula (northern Greece). Neues Jahrbuch für Mineralogie, 192, 107–116.CrossRefGoogle Scholar
  49. Papadopoulos, A., Koroneos, A., Christofides, G., Papadopoulou, L., Tzifas, I., and Stoulos, S., 2016a, Assessment of gamma radiation exposure of beach sands in highly touristic areas associated with plutonic rocks of the Atticocycladic zone (Greece). Journal of Environmental Radioactivity, 162, 235–243.CrossRefGoogle Scholar
  50. Papadopoulos, A., Koroneos, A., Christofides, G., and Papadopoulou, L., 2016b, Geochemistry of beach sands from Kavala, Northern Greece. Italian Journal of Geosciences, 135, 1–43.CrossRefGoogle Scholar
  51. Pe, G.G. and Panagos, A.G., 1979, Heavy mineralogy of river and beach sands, continental Greece. Neues Jahrbuch für Mineralogie, 136, 254–261.Google Scholar
  52. Pe-Piper, G., Triantafyllidis, S., and Piper, D.J.W., 2008, Geochemical identification of clastic sediment provenance from known sources of similar geology, the Cretaceous Scotian Basin, Canada. Journal of Sedimentary Research, 78, 595–607.CrossRefGoogle Scholar
  53. Pe-Piper, G., 2000, Origin of S-type granites coeval with I-type granites in the Hellenic subduction system, Miocene of Naxos, Greece. European Journal of Mineralogy, 12, 859–875.CrossRefGoogle Scholar
  54. Pe-Piper, G. and Piper, D.J.W., 2002, The Igneous Rocks of Greece: The Anatomy of an Orogeny. Borntraeger, Berlin 573 p.Google Scholar
  55. Pe-Piper, G., Kotopouli, C.N., and Piper, D.J.W., 1997, Granitoid rocks of Naxos, Greece, regional geology and petrology. Geological Journal, 32, 153–171.CrossRefGoogle Scholar
  56. Pe-Piper, G., Piper, D.J.W., and Matarangas, D., 2002, Regional implications of geochemistry and style of emplacement of Miocene I-type diorite and granite, Delos, Cyclades, Greece. Lithos, 60, 47–66.CrossRefGoogle Scholar
  57. Pergamalis, F., Karageorgiou, D.E., Koukoulis, A., and Katsikis, I., 2001, Mineralogical and chemical composition of sand ore deposits in the seashore zone N. Peramos-L. Eleftheron (N. Greece). Bulletin of Geological Society of Greece, XXXIV/3, 845–850.Google Scholar
  58. Pettijohn, F.J., Potter, P.E., and Siever, R., 1972, Sand and Sandstones. Springer-Verlag, New York, 618 p.Google Scholar
  59. Pohl, W., 2005, Economic Geology: Principles and Practice. Wiley-Blackwell, Chichester, 663 p.Google Scholar
  60. Price, J.R., Velbel, M.A., and Ratino, L.C., 2005, Allanite and epidote weathering at the Coweeta Hydrologic Laboratory, western North Carolina, U.S.A. American Mineralogist, 90, 101–114.CrossRefGoogle Scholar
  61. Ramos Vasquez, M.A., Armstrong-Altrin, J.S., Rosales-Hoz, L., Machain-Castillo, M.L., and Carranza-Edwards, A., 2017, Geochemistry of deep-sea sediments in two cores retrieved at the mouth of the Coatzacoalcos River delta, western Gulf of Mexico, Mexico. Arabian Journal of Geosciences, 148, 1–19.Google Scholar
  62. Ridley, J., 2013, Ore Deposit Geology. Cambridge University Press, New York, 409 p.CrossRefGoogle Scholar
  63. Roser, B.P. and Korsch, R.J., 1988, Provenance signatures of sandstonemudstone suites determined using discrimination function analysis of major-element data. Chemical Geology, 67, 119–139.CrossRefGoogle Scholar
  64. Roy, P.S., Whitehouse, J., Cowell, P.J., and Oakes, G., 2000, Mineral sands occurrences in the Murray Basin, Southeastern Australia. Economic Geology 95, 1107–1128.Google Scholar
  65. Skarpelis, N., Tsikouras, B., and Pe-Piper, G., 2008, The Miocene igneous rocks in the Basal Unit of Lavrion (SE Attica, Greece): petrology and geodynamic implications. Geological Magazine, 145, 1–15.CrossRefGoogle Scholar
  66. Stouraiti, C., Mitropoulos, P., Tarney, J., Barreiro, B., McGrath, A.M., and Baltatzis, E., 2010, Geochemistry and petrogenesis of late Miocene granitoids, Cyclades, southern Aegean: nature of source components. Lithos, 114, 337–352.CrossRefGoogle Scholar
  67. Sun, S.S. and McDonough, W.F., 1989, Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders, A.D. and Norry, M.J. (eds.), Magmatism in the Ocean Basins. Geological Society of London, Special Publication, 42, p. 313–345.Google Scholar
  68. Tapia-Fernandez, H.J., Armstrong-Altrin, J.S., and Selvaraj, K., 2017, Geochemistry and U-Pb geochronology of detrital zircons in the Brujas beach sands, Campeche, Southwestern Gulf of Mexico, Mexico. Journal of South American Earth Sciences, 76, 346–361.CrossRefGoogle Scholar
  69. Tzifas, I.T., Misaelides, P., Godelitsas, A., Gamaletsos, P.N., Nomikou, P., Karydas, A.G., Kantarelou V., and Papadopoulos, A., 2017, Geochemistry of coastal sands of Eastern Mediterranean: The case of Nisyros volcanic materials. Chemie der Erde. http://dx.doi.org/ 10.1016/j.chemer.2017.07.002Google Scholar
  70. Van Gosen, B.S., Verplanck, P.L., Long K.R., Gambogi, J., and Seal, R.R., 2014, The Rare-earth elements–vital to modern technologies and lifestyles. U.S. Geological Survey Fact Sheet, 2014-3078, 4 p.Google Scholar
  71. Verma, S.P. and Armstrong-Altrin, J.S., 2013, New multi-dimensional diagrams for tectonic discrimination of siliciclastic sediments and their application to Precambrian basins. Chemical Geology, 355, 117–133.CrossRefGoogle Scholar
  72. Verma, S.P. and Armstrong-Altrin, J.S., 2016, Geochemical discrimination of siliciclastic sediments from active and passive margin settings. Sedimentary Geology, 332, 1–12.CrossRefGoogle Scholar
  73. Verma, S.P., Díaz-González, L., and Armstrong-Altrin, J.S., 2016, Application of a new computer program for tectonic discrimination of Cambrian to Holocene clastic sediments. Earth Science Informatics, 9, 151–165.CrossRefGoogle Scholar
  74. Wall, F., 2014, Rare Earth Elements. In: Gunn, G. (ed.), Critical Metals Handbook. John Wiley & Sons, American Geophysical Union, Hoboken, p. 312–339.Google Scholar
  75. Zaid, S.M., 2012, Provenance, diagenesis, tectonic setting and geochemistry of Rudiessandstone (Lower Miocene), Warda Field, Gulf of Suez, Egypt. Journal of African Earth Sciences, 66/67, 56–71.CrossRefGoogle Scholar

Copyright information

© The Association of Korean Geoscience Societies and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mineralogy, Petrology, Economic GeologyAristotle University of ThessalonikiThessalonikiGreece

Personalised recommendations