Advertisement

Response of transgenic tobacco overexpressing the CchGLP gene to cadmium and aluminium: phenotypic and microRNAs expression changes

  • Diana Sáenz-de la O
  • Christopher Alexis Cedillo-Jimenez
  • Luis F. García-Ortega
  • Mariela Martínez-Reséndiz
  • Diego Arné-Robles
  • Andrés Cruz-Hernandez
  • Ramón Gerardo Guevara-GonzalezEmail author
Research Article
  • 36 Downloads

Abstract

Transgenic tobacco (N. tabacum cv. Xanthi nc) expressing Capsicum chinense CchGLP gene that encodes an Mn-SOD, constitutively produces hydrogen peroxide that increase endogenous ROS levels. Previous studies using these plants against geminivirus infections as well as drought stress confirmed that CchGLP expression conferred resistance against biotic and abiotic stresses. Cadmium (Cd) and Aluminium (Al) contamination in soils are a major ecological concern since they are two of the most widespread toxic elements in terrestrial environments. Trying to explore additional possible tolerance to another stresses in these plants, the aim of this work was to analyse the response to cadmium and aluminium salts during germination and early stages of plantlet development and a differential transcriptome of microRNAs (miRNAs) expression in expressing CchGLP transgenic lines and an azygote non-CchGLP expressing line. Plants were grown in vitro with addition of CdCl2 and AlCl3 at three different concentrations: 100, 300 and 500 μM and 50, 150 and 300 μM, respectively. The results showed higher tolerance to Cd and Al salts evaluated in two CchGLP-expressing transgenic lines L8 and L26 in comparison with the azygous non-CchGLP expressing line L1. Interestingly, L8 under Al stress presented vigorous roots and development of radicular hairs in comparison with azygous control (L1). Differentially expressed miRNAs in the comparison between L8 and L1 were associated with up and down-regulation of target genes related with structural molecule activity and ribosome constituents, as well as down-regulation in proton-transporting V-type ATPase (Vacuolar ATPase or V-ATPase). Moreover, KEGG analysis of the target genes for the differentially expressed miRNAs, led to identification of genes related with metabolic pathways and biosynthesis of secondary metabolites. One possible explanation of the tolerance to Cd and Al displayed in the transgenic tobaccos evaluated, might involve the fact that several down-regulated miRNAs, were found associated with target genes expressing V-ATPase. Specifically, miR7904-5p was down regulated and related with the up-regulation of one V-ATPase. The expression levels of these genes was confirmed by qRT-PCR assays, thus suggesting that a cation transport activity driven by the V-ATPases-dependent proton motive force, might significantly contribute as one mechanism for Cd and Al detoxification by vacuolar compartmentation in these transgenic tobacco plants.

Keywords

Abiotic stress Heavy metal stress Aluminium resistance Cadmium resistance miRNAs 

Notes

Acknowledgements

Authors acknowledge to SEP-CONACyT (Ciencia básica 2016) Grant 283259 for funding the present research. Also D.S-de la O, and C.A.C-J acknowledge to CONACyT for scholarship support for Ph.D. studies including the present research

Supplementary material

12298_2019_716_MOESM1_ESM.pptx (1.6 mb)
Supplementary material 1 (PPTX 1626 kb)

References

  1. Anderson TW, Darling DA (1954) A test of goodness of fit. J Am Stat Assoc 49:765–769CrossRefGoogle Scholar
  2. Andresen E, Hendrik K (2013) Cadmium toxicity in plants. In: Sigel A, Sigel H, Sigel RKO (eds) Cadmium: from toxicity to essentiality. Springer, Berlin, pp 395–413.  https://doi.org/10.1007/978-94-007-5179-8 CrossRefGoogle Scholar
  3. Axtell MJ, Meyers BC (2018) Revisiting criteria for plant miRNA annotation in the era of big data. Plant Cell.  https://doi.org/10.1105/tpc.17.00851 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Barrera-Pacheco A, Joaquín-Ramos ADJ, Torres-Pacheco I, González-Chavira MM, Pérez-Pérez MCL, Guevara-Olvera L, Guevara-González RG (2008) Análisis de la expresión transcripcional inducida Bajo condiciones de estrés biótico y abiótico en Capsicum chinense BG-3821. Agrociencia 42:95–106Google Scholar
  5. Bolger AM, Lohse M, Usadel B (2014) Genome analysis Trimmomatic: a flexible trimmer for Illumina sequence data 30:2114–2120.  https://doi.org/10.1093/bioinformatics/btu170 CrossRefGoogle Scholar
  6. Bushnell B (2015) BBMap short-read aligner, and other bioinformatics tools. https://sourceforge.net/projects/bbmap
  7. Caballero-pérez J, Espinal-centeno A, Falcon F, García-ortega LF, Curiel-quesada E, Cruz-hernández A, Bako L, Chen X, Martínez O, Arteaga-vázquez MA, Herrera-estrella L (2017) Transcriptional landscapes of Axolotl (Ambystoma mexicanum). Dev Biol.  https://doi.org/10.1016/j.ydbio.2017.08.022 CrossRefPubMedGoogle Scholar
  8. Cardenas-Manríquez G, Vega-Muñoz I, Villagómez-Aranda AL, León-Galvan MF, Cruz-Hernandez A, Torres-Pacheco I, Rangel-Cano RM, Rivera-Bustamante RF, Guevara-Gonzalez RG (2016) Proteomic and metabolomic profiles in transgenic tobacco (N. tabacum xanthi nc) to CchGLP from Capsicum chinense BG-3821 resistant to biotic and abiotic stresses. Environ Exp Bot 130:33–41.  https://doi.org/10.1016/j.envexpbot.2016.05.005 CrossRefGoogle Scholar
  9. Cardenas-Manríquez G, Cruz-Hernandez A, Torres-Pacheco I, Caballero-Perez J, Gonzalez-Chavira MM, Garcia-Ortega LF, Guevara-Gonzalez RG (2018) Transcriptome profiling of transgenic tobacco (Nicotiana tabacum cv. xanthi nc) expressing CchGLP gene from Capsicum chinense Jacq. reveals gene expression associated with stress tolerance. J Hortic Sci Biotechnol 93:595–604.  https://doi.org/10.1080/14620316.2017.1421485 CrossRefGoogle Scholar
  10. Ciamporova M (2002) Morphological and structural responses of plant roots to aluminium at organ, tissue, and cellular levels. Biol Plant 45:161–171CrossRefGoogle Scholar
  11. Czimmerer Z, Hulvely J, Simandi Z, Varallyay E, Havelda Z, Szabo E, Varga A, Deszo B, Balogh M, Horvath A, Domokos B, Torok Z, Nagy L, Balint BL (2013) A versatile method to design stem-loop primer-based quantitative PCR assays for detecting small regulatory RNA molecules. PLoS ONE 8:e55168.  https://doi.org/10.1371/journal.pone.0055168 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Davidson RM, Reeves PA, Manosalva PM, Leach JE (2009) Germins: a diverse protein family important for crop improvement. Plant Sci 177:499–510.  https://doi.org/10.1016/j.plantsci.2009.08.012 CrossRefGoogle Scholar
  13. Delhaize E, Ryan PR (1995) Aluminum toxicity and tolerance in plants. Plant Physiol 107:315–321CrossRefGoogle Scholar
  14. Dietz KJ, Tavakoli N, Kluge C, Mimura T, Sharma SS, Harris GC, Chardonnens AN, Golldack D (2001) Significance of the V-type ATPase for the adaptation to stressful growth conditions and its regulation on the molecular and biochemical level. J Exp Bot 52:1969–1980CrossRefGoogle Scholar
  15. Dunwell JM, Gibbings JG, Mahmood T, Saqlan Naqvi SM (2008) Germin and germin-like proteins: evolution, structure and function. Crit Rev Plant Sci 27:342–375.  https://doi.org/10.1080/07352680802333938 CrossRefGoogle Scholar
  16. Edwards KD, Humphry M, Evans AD, Bombarely A, Allen F (2017) A reference genome for Nicotiana tabacum enables map-based cloning of homeologous loci implicated in nitrogen utilization efficiency. BMC Genom.  https://doi.org/10.1186/s12864-017-3791-6 CrossRefGoogle Scholar
  17. Goyal RK, Fatima T, Topuz M, Bernadec A, Sicher R, Handa AK, Mattoo AK (2016) Pathogenesis-related protein 1b1 (PR1b1) is a major tomato fruit protein responsive to chilling temperature and upregulated in high polyamine transgenic genotypes. Front Plant Sci.  https://doi.org/10.3389/fpls.2016.00901 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Greco M, Chiappetta A, Bruno L, Bitonti MB (2012) In Posidonia oceanica cadmium induces changes in DNA methylation and chromatin patterning. J Exp Bot 63:695–709.  https://doi.org/10.1093/jxb/err313 CrossRefPubMedGoogle Scholar
  19. Guevara-Olvera L, Ruíz-Nito ML, Rangel-Cano RM, Torres-Pacheco I, Rivera-Bustamante RF, Muñoz-Sánchez CI, González-Chavira MM, Cruz-Hernandez A, Guevara-González RG (2012) Expression of a germin-like protein gene (CchGLP) from a geminivirus-resistant pepper (Capsicum chinense Jacq.) enhances tolerance to geminivirus infection in transgenic tobacco. Physiol Mol Plant Pathol 78:45–50.  https://doi.org/10.1016/j.pmpp.2012.01.005 CrossRefGoogle Scholar
  20. Janicka-Russak M, Kabala K, Burzynski M (2012) Different effect of cadmium and copper on H + -ATPase activity in plasma membrane vesicles from Cucumis sativus roots. J Exp Bot 63:4133–4142CrossRefGoogle Scholar
  21. Jin Y, Fan X, Li X, Zhang Z, Sun L, Fu Z, Lavoie M, Pan X, Qian H (2017) Distinct physiological and molecular responses in Arabidopsis thaliana exposed to aluminum oxide nanoparticles and ionic aluminum*. Environ Pollut 228:517–527.  https://doi.org/10.1016/j.envpol.2017.04.073 CrossRefPubMedGoogle Scholar
  22. Kalvari I, Argasinska J, Quinones-olvera N, Nawrocki EP, Rivas E, Eddy SR, Bateman A, Finn RD, Petrov AI (2018) Rfam: shifting to a genome-centric resource for non-coding RNA families 46:335–342.  https://doi.org/10.1093/nar/gkx1038 CrossRefGoogle Scholar
  23. Kisa D, Elmastas M, Öztürk L, Kayir Ö (2016) Responses of the phenolic compounds of Zea mays under heavy metal stress. Appl Biol Chem.  https://doi.org/10.1007/s13765-016-0229-9 CrossRefGoogle Scholar
  24. Kochian LV, Hoekenga OA, Piñeros MA (2004) How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annu Rev Plant Biol 55:459–493.  https://doi.org/10.1146/annurev.arplant.55.031903.141655 CrossRefGoogle Scholar
  25. Kochian LV, Piñeros MA, Hoekenga OA (2005) The physiology, genetics and molecular biology of plant aluminum resistance and toxicity. Plant Soil 274:175–195.  https://doi.org/10.1007/s11104-004-1158-7 CrossRefGoogle Scholar
  26. Kozomara A, Griffiths-jones S (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42:68–73.  https://doi.org/10.1093/nar/gkt1181 CrossRefGoogle Scholar
  27. Lee K-W, Rahman A, Kim K-Y, Choi GJ, Cha J-Y, Cheong MS, Shohael AM, Jones C, Lee SH (2018) Overexpression of the alfalfa DNAJ-like protein (MsDJLP) gene enhances tolerance to chilling and heat stresses in transgenic tobacco plants. Turk J Biol 42:12–22.  https://doi.org/10.3906/biy-1705-30 CrossRefPubMedPubMedCentralGoogle Scholar
  28. León-galván F, Joaquín-ramos ADJ, Torres-pacheco I (2011) A germin-like protein gene (CchGLP) of Capsicum chinense Jacq. is induced during incompatible interactions and displays Mn-superoxide dismutase activity. Int J Mol Sci 1200:7301–7313.  https://doi.org/10.3390/ijms12117301 CrossRefGoogle Scholar
  29. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real time quantitative PCR and the 2 − ΔΔCT method. Methods 25:402–408CrossRefGoogle Scholar
  30. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.  https://doi.org/10.14806/ej.17.1.200 CrossRefGoogle Scholar
  31. Nakamura M, Nishimura T, Morita MT (2019) Gravity sensing and signal conversion in plant gravitropism. J Exp Bot.  https://doi.org/10.1093/jxb/erz158 CrossRefPubMedGoogle Scholar
  32. Nawrocki EP, Kolbe DL, Eddy SR (2009) Infernal 1.0: inference of RNA alignments. Bioinformatics 25:1335–1337.  https://doi.org/10.1093/bioinformatics/btp157 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Robinson MD, Mccarthy DJ, Smyth GK (2010) edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140.  https://doi.org/10.1093/bioinformatics/btp616 CrossRefGoogle Scholar
  34. Schwab R, Palatnik JF, Riester M, Schommer C, Schmid M, Weigel D (2005) Specific effects of MicroRNAs on the plant transcriptome. Dev Cell 8:517–527.  https://doi.org/10.1016/j.devcel.2005.01.018 CrossRefPubMedGoogle Scholar
  35. Sharma A, Shahzad B, Rehman A, Bhardwaj R, Landi M, Zheng B (2019) Response of the phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules 24:2452.  https://doi.org/10.3390/molecules24132452 CrossRefPubMedCentralGoogle Scholar
  36. Shriram V, Kumar V, Devarumath RM, Khare TS (2016) MicroRNAs as potential targets for abiotic stress tolerance in plants. Front Plant Sci 7:1–18.  https://doi.org/10.3389/fpls.2016.00817 CrossRefGoogle Scholar
  37. Sofo A, Bochicchio R, Amato M, Rendina N, Vitti A, Nuzzaci M, Altamura MM, Falasca G, Della Rovere F, Scopa A (2017) Plant architecture, auxin homeostasis and phenol content in Arabidopsis thaliana grown in cadmium- and zinc-enriched media. J Plant Physiol 216:174–180CrossRefGoogle Scholar
  38. Sunkar R (2010) Seminars in cell developmental biology MicroRNAs with macro-effects on plant stress responses. Semin Cell Dev Biol 21:805–811.  https://doi.org/10.1016/j.semcdb.2010.04.001 CrossRefPubMedGoogle Scholar
  39. Wang M, Weiberg A, Dellota E Jr, Yamane D, Jin H (2017) Botrytis small RNA Bc-siR37 suppresses plant defense genes by cross-kingdom RNAi. RNA Biol 14(4):421–428.  https://doi.org/10.1080/15476286.2017.1291112 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Yu G, Wang L-G, Han Y, He Q-Y (2012) clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS J Integr Biol 16(5):284–287CrossRefGoogle Scholar
  41. Yue R, Lu C, Qi J, Han X, Yan S, Guo S, Liu L, Fu X, Chen N, Yin H, Chi H, Tie S (2016) Transcriptome analysis of cadmium-treated roots in maize (Zea mays L.). Front Plant Sci 7:1–11.  https://doi.org/10.3389/fpls.2016.01298 CrossRefGoogle Scholar
  42. Zhou L, Hou H, Yang T, Lian Y, Sun Y, Bian Z, Wang C (2018) Exogenous hydrogen peroxide inhibits primary root gravitropism by regulating auxin distribution during Arabidopsis seed germination. Plant Physiol Biochem 128:126–133CrossRefGoogle Scholar
  43. Zhu D, Hu K, Guo X, Liu Y, Hu L, Li Y, Wang S, Zhang H (2015) Sulfur dioxide enhances endogenous hydrogen sulfide accumulation and alleviates oxidative stress induced by aluminum stress in germinating wheat Seeds. Oxid Med Cell Longev.  https://doi.org/10.1155/2015/612363 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Prof. H.S. Srivastava Foundation for Science and Society 2019

Authors and Affiliations

  • Diana Sáenz-de la O
    • 1
  • Christopher Alexis Cedillo-Jimenez
    • 1
  • Luis F. García-Ortega
    • 2
  • Mariela Martínez-Reséndiz
    • 1
  • Diego Arné-Robles
    • 1
  • Andrés Cruz-Hernandez
    • 3
  • Ramón Gerardo Guevara-Gonzalez
    • 1
    Email author
  1. 1.Biosystems Engineering Group, School of EngineeringAutonomous University of QueretaroQuerétaroMexico
  2. 2.Departamento de Ingeniería GenéticaCentro de Investigación y de Estudios Avanzados del IPN (CINVESTAV)Irapuato, GuanajuatoMexico
  3. 3.Agronomy SchoolLa Salle Bajío UniversityLeónMexico

Personalised recommendations