Advertisement

Physiology and Molecular Biology of Plants

, Volume 25, Issue 1, pp 71–83 | Cite as

Differential response of Indian mustard (Brassica juncea L., Czern and Coss) under salinity: photosynthetic traits and gene expression

  • Jogendra Singh
  • Vijayata Singh
  • T. V. Vineeth
  • Parveen Kumar
  • Neeraj Kumar
  • Parbodh C. SharmaEmail author
Research Article
  • 78 Downloads

Abstract

To explore the effect of salt stress on photosynthetic traits and gene expression in Indian mustard, four genotypes CS 54 (national check for salinity), CS 52-SPS-1-2012 (salt tolerant mutant), CS 614-4-1-4-100-13 (salt sensitive mutant) and Pusa bold (high yielding variety) were evaluated under irrigation water salinity (ECiw 12, and 15 dS m−1). Results suggest genotype CS 52-SPS-1-2012 followed by CS 54 performed better under imposed salt stress due to differential regulation of Na+ accumulation in the roots and main stem, restriction of Na+ influx from root to shoot, maintaining higher net photosynthetic traits under saline stress compared to CS 614-4-1-4-100-13 and Pusa bold. Further, overexpression of antiporters (SOS1, SOS2, SOS3, ENH1 and NHX1) and antioxidant (APX1, APX4, DHAR1 and MDHAR) genes in salt tolerant genotypes CS 52-SPS-1-2012 and CS 54 demonstrated their significant role in imparting salt tolerance in Indian mustard.

Keywords

Salt tolerant Salinity Gene expression Photosynthetic traits 

Abbreviations

Pn

Rate of photosynthesis (µmol CO2 m−2 s−1)

gS

Stomatal conductance (mmol m−2 s−1)

E

Rate of transpiration (mmol H2O m−2 s−1)

iWUE

Instantaneous water use efficiency [µmol (CO2) mmol−1 (H2O)]

Ci/Ca

CO2 assimilation (µmol CO2 mol−1)

PAR

Photosynthetically active radiation

SOS

Salt overly sensitive

ENH

Enhancer of SOS

NHX

Vacuolar Na+/H+ antiporters

APX

Ascorbate peroxidase

DHAR

Dehydroascorbate reductase

MDHAR

Mono-dehydroascorbate reductase

Notes

Compliance with ethical standards

Conflict of interest

Authors have no conflict of interest.

Supplementary material

12298_2018_631_MOESM1_ESM.docx (15 kb)
Supplementary material 1 (DOCX 15 kb)

References

  1. Abedinpour M (2017) Wheat water use and yield under different salinity of irrigation water. J Water Land Dev 33:3–9CrossRefGoogle Scholar
  2. Aharon GS, Apse MP, Duan S, Hual X, Blumwald E (2003) Characterization of a family of vacuolar Na+/H+ antiporters in Arabidopsis thaliana. Plant Soil 253:245–256CrossRefGoogle Scholar
  3. Almeida DM, Oliveira MM, Saibo NJM (2017) Regulation of Na+ and K+ homeostasis in plants: towards improved salt stress tolerance in crop plants. Genet Mol Biol 40(1):326–345CrossRefGoogle Scholar
  4. Asada K (1999) The water–water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639CrossRefGoogle Scholar
  5. Asha Dhingra HR (2007) Salinity mediated changes in yield and nutritive value of chickpea seeds. Indian J Plant Physiol 12:271–275Google Scholar
  6. Ashraf M, McNeilly T (2004) Salinity tolerance in Brassica oilseeds. Crit Rev Plant Sci 23:157–174CrossRefGoogle Scholar
  7. Baalbaki RZ, Zurayak RA, Adlan MAM, Saxena CM (2000) Effect of nitrogen source and salinity levels on salt accumulation of two chickpea genotypes. J Plant Nutr 23:805–814CrossRefGoogle Scholar
  8. Babicki S, Arndt D, Marcu A, Liang Y, Grant JR, Maciejewski A, Wishart DS (2016) Heatmapper: web-enabled heat mapping for all. Nucleic Acids Res 44(1):W147–W153CrossRefGoogle Scholar
  9. Barragán V, Leidi EO, Andrés Z, Rubio L, De Luca A, Fernández JA, Cubero B, Pardo JM (2012) Ion exchangers NHX1 and NHX2 mediate active potassium uptake into vacuoles to regulate cell turgor and stomatal function in Arabidopsis. Plant Cell 24(3):1127–1142CrossRefGoogle Scholar
  10. Blumwald E (2000) Sodium transport and salt tolerance in plants. Curr Opin Cell Biol 12:431–434CrossRefGoogle Scholar
  11. Blumwald E, Poole RJ (1985) Na/H antiport in isolated tonoplast vesicles from storage tissue of Beta vulgaris. Plant Physiol 78(1):163–167CrossRefGoogle Scholar
  12. Blumwald E, Aharon GS, Apse MP (2000) Sodium transport in plant cells. Biochim Biophys Acta 1465:140–151CrossRefGoogle Scholar
  13. Buchanan CD, Lim S, Salzman RA, Kagiampakis I, Morishige DT, Weers BD, Klein RR, Pratt LH, Cordonnier-Pratt MM, Klein PE, Mullet JE (2005) Sorghum bicolor’s transcriptome response to dehydration, high salinity and ABA. Plant Mol Biol 58(5):699–720CrossRefGoogle Scholar
  14. Candan N, Tarhan L (2003) The correlation between antioxidant enzyme activities and lipid peroxidation levels in Mentha pulegiumorgans grown in Ca2+, Mg2+, Cu2+, Zn2+ and Mn2+ stress conditions. Plant Sci 163:769–779CrossRefGoogle Scholar
  15. Chakraborty K, Sairam RK, Bhattacharya RC (2012) Differential expression of salt overly sensitive pathway genes determines salinity stress tolerance in Brassica genotypes. Plant Physiol Biochem 51:90–101CrossRefGoogle Scholar
  16. Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103:551–560CrossRefGoogle Scholar
  17. Chawla S, Jain S, Jain V (2013) Salinity induced oxidative stress and antioxidant system in salt-tolerant and salt-sensitive cultivars of rice (Oryza sativa L.). J Plant Biochem Biotechnol 22:27–34CrossRefGoogle Scholar
  18. Cruz JL, Filho MAC, Coelho EF, dos Santos AA (2017) Salinity reduces carbon assimilation and the harvest index of cassava plants (Manihot esculenta Crantz). Acta Sci Agron 39(4):545–555CrossRefGoogle Scholar
  19. CSSRI (2015) CSSRI vision 2050. ICAR-Central Soil Salinity Research Institute, KarnalGoogle Scholar
  20. Davletova S, Rizhsky L, Liang H, Shengqiang Z, Oliver DJ, Coutu J, Shulaev V, Schlauch K, Mittler R (2005) Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis. Plant Cell 17:268–281CrossRefGoogle Scholar
  21. deVos AC, Broekman R, Guerra CCA, van Rijsselberghe M, Rozema J (2013) Developing and testing new halophyte crops: a case study of salt tolerance of two species of the Brassicaceae, Diplotaxis tenuifolia and Cochlearia officilais. Environ Exp Bot 92:154–164CrossRefGoogle Scholar
  22. Diaz-Vivancos P, Faize M, Barba-Espin G, Faize L, Petri C, Hernández JA (2013) Ectopic expression of cytosolic superoxide dismutase and ascorbate peroxidase leads to salt stress tolerance in transgenic plums. Plant Biotech J 11:976–985CrossRefGoogle Scholar
  23. Dietz KJ, Tavakoli N, Kluge C, Mimura T, Sharma SS, Harris GC, Chardonnens AN, Golldack D (2001) Significance of the V type ATPase for the adaptation to stressful growth conditions and its regulation on the molecular and biochemical level. J Exp Bot 52(363):1969–1980CrossRefGoogle Scholar
  24. Eltelib HA, Fujikawa Y, Esaka M (2012) Overexpression of the acerola (Malpighia glabra) monodehydroascorbate reductase gene in transgenic tobacco plants results in increased ascorbate levels and enhanced tolerance to salt stress. S Afr J Bot 78:295–301CrossRefGoogle Scholar
  25. Fukuda A, Nakamura A, Hara N, Toki S, Tanaka Y (2011) Molecular and functional analyses of rice NHX-type Na+/H+ antiporter genes. Planta 233:175–188CrossRefGoogle Scholar
  26. Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930CrossRefGoogle Scholar
  27. Groß F, Durner J, Gaupels F (2013) Nitric oxide, antioxidants and prooxidants in plant defence responses. Front Plant Sci 29(4):419Google Scholar
  28. Gupta NK, Meena SK, Gupta S, Khandelwal SK (2002) Gas exchange, membrane permeability and ion uptake in two species of Indian jujube differing in salt tolerance. Photosynthetica 40:535–539CrossRefGoogle Scholar
  29. Gupta KJ, Stoimenova M, Kaiser WM (2005) In higher plants, only root mitochondria, but not leaf mitochondria reduce nitrite to NO, in vitro and in situ. J Exp Bot 56(420):2601–2609CrossRefGoogle Scholar
  30. Hasegawa PM (2013) Sodium (Na+) homeostasis and salt tolerance of plants. Environ Exp Bot 92:19–31CrossRefGoogle Scholar
  31. Hentschel R, Hommel R, Poschenrieder W, Grote R, Holst J, Biernath C, Gessler A, Priesack E (2016) Stomatal conductance and intrinsic water use efficiency in the drought year 2003: a case study of European beech. Trees 30:153–174CrossRefGoogle Scholar
  32. Hichem H, Naceur EA, Mounir D (2009) Effects of salt stress on photosynthesis, PSII photochemistry and thermal energy dissipation in leaves of two corn (Zea mays L.) varieties. Photosynthetica 47:517–526CrossRefGoogle Scholar
  33. Ishitani M, Liu J, Halfter U, Kim CS, Shi W, Zhu JK (2000) SOS3 function in plant salt tolerance requires N myristoylation and calcium binding. Plant Cell 12(9):1667–1677CrossRefGoogle Scholar
  34. James RA, Sirault XR (2012) Infrared thermography in plant phenotyping for salinity tolerance. Methods Mol Biol 913:173–189Google Scholar
  35. James RA, Rivelli AR, Munns R, Caemmerer SV (2002) Factors affecting CO2 assimilation, leaf injury and growth in salt-stressed durum wheat. Funct Plant Biol 29:1393–1403CrossRefGoogle Scholar
  36. Ji H, Pardo JM, Batelli G, Van Oosten MJ, Bressan RA, Li X (2013) The salt overly sensitive (SOS) pathway: established and emerging roles. Mol Plant 6:275–286CrossRefGoogle Scholar
  37. Jonathan NFG, Lehti-Shiu MD, Ingram PA, Deak KI, Biesiada T, Malamy JE (2006) Identification of quantitative trait loci that regulate Arabidopsis root system size and plasticity. Genetics 172:485–498Google Scholar
  38. Kumar G, Purty RS, Sharma MP, Singla-Pareek SL, Pareek A (2009) Physiological responses among Brassica species under salinity stress show strong correlation with transcript abundance for SOS pathway-related genes. J Plant Physiol 166:507–520CrossRefGoogle Scholar
  39. Kumar S, Kalita A, Srivastava R, Sahoo L (2017) Co-expression of Arabidopsis NHX1 and bar improves the tolerance to salinity, oxidative stress, and herbicide in transgenic mungbean. Front Plant Sci 8:1896CrossRefGoogle Scholar
  40. Liao YD, Lin KH, Chen CC, Chang CM (2016) Oryza sativa protein phosphatase 1a (OsPP1a) involved in salt stress tolerance in transgenic rice. Mol Breed 36:22CrossRefGoogle Scholar
  41. Liu J, Ishitani M, Halfter U, Kim CS, Zhu JK (2000) The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proc Natl Acad Sci 97(7):3730–3734CrossRefGoogle Scholar
  42. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ddct method. Methods 25:402–408CrossRefGoogle Scholar
  43. Lu KX, Cao BH, Feng XP, He Y, Jiang DA (2009) Photosynthetic response of salt tolerant and sensitive soybean varieties. Photosynthetica 47:381–387CrossRefGoogle Scholar
  44. Ma S, Gong Q, Bohnert HJ (2006) Dissecting salt stress pathways. J Exp Bot 57:1097–1107CrossRefGoogle Scholar
  45. Mallikarjuna G, Mallikarjuna K, Reddy MK, Kaul T (2011) Expression of OsDREB2A transcription factor confers enhanced dehydration and salt stress tolerance in rice (Oryza sativa L.). Biotechnol Lett 33(8):1689–1697CrossRefGoogle Scholar
  46. Martinez V, Nieves-Cordones M, Lopez-Delacalle M, Rodenas R, Mestre TC, Garcia-Sanchez F, Rubio F, Nortes PA, Mittler R, Rivero RM (2018) Tolerance to stress combination in tomato plants: new insights in the protective role of melatonin. Molecules 23(3):535CrossRefGoogle Scholar
  47. Martínez-Atienza J, Jiang X, Garciadeblas B, Mendoza I, Zhu JK, Pardo JM, Quintero FJ (2007) Conservation of the salt overly sensitive pathway in rice. Plant Physiol 143(2):1001–1012CrossRefGoogle Scholar
  48. Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51:659–668CrossRefGoogle Scholar
  49. Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33:453–467CrossRefGoogle Scholar
  50. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681CrossRefGoogle Scholar
  51. Munns R, James RA, Lauchli A (2006) Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot 57:1025–1043CrossRefGoogle Scholar
  52. Noreen Z, Ashraf M, Akram NA (2010) Salt-induced regulation of some key antioxidant enzymes and physio-biochemical phenomena in five diverse cultivars of turnip (Brassica rapa L.). J Agron Crop Sci 196:273–285Google Scholar
  53. Omamt EN, Hammes PS, Robbertse PJ (2006) Differences in salinity tolerance for growth and water-use efficiency in some amaranth (Amaranthus spp.) genotypes. N Z J Crop Hortic 34(1):11–22CrossRefGoogle Scholar
  54. Panchuk II, Zentgraf U, Volkov RA (2005) Expression of the Apx gene family during leaf senescence of Arabidopsis thaliana. Planta 222:926–932CrossRefGoogle Scholar
  55. Passaia G, Spagnolo FL, Caverzan A, Jardim-Messeder D, Christoff AP, Gaeta ML, de Araujo Mariath JE, Margis R, Margis-Pinheiro M (2013) The mitochondrial glutathione peroxidase GPX3 is essential for H2O2 homeostasis and root and shoot development in rice. Plant Sci 208:93–101CrossRefGoogle Scholar
  56. Piper CS (1942) Soil and Plant Analysis. Hassell Press, AustraliaGoogle Scholar
  57. Qi B, Wang J, Ma H, Chen J, Zhang Y, Xu Y, Chang Z (2012) Effects of salt stress on the seedling’s photosynthetic characteristics of different genotypes sweet potato. Chin J Ecol 31(12):3102–3108Google Scholar
  58. Reddy MP, Sanish S, Iyengar ERR (1992) Photosynthetic studies and compartmentation of ions in different tissues of Salicornia brachiata Roxb. under saline conditions. Photosynthetica 26:173–179Google Scholar
  59. Rengasamy P, Olsson KA (1993) Irrigation and sodicity. Aust J Soil Res 31:821–837CrossRefGoogle Scholar
  60. Saleem M, Ashraf M, Akram NA (2011) Salt (NaCl) induced modulation in some key physio-biochemical attributes in okra (Abelmoschus esculentus L.). J Agron Crop Sci 197:202–213CrossRefGoogle Scholar
  61. Serrano R, Mulet JM, Rios G, Marquez JA, de Larrinoa IF, Leube MP, Mendizabal I, Pascual-Ahuir A, Proft M, Ros R, Montesinos C (1999) A glimpse of the mechanisms of ion homeostasis during salt stress. J Exp Bot 50:1023–1036CrossRefGoogle Scholar
  62. Sharma PC, Prashat R, Gingh GD, Pareek A (2008) Improving salt tolerance and seed yield in Indian mustard (Brassica juncea L.) through radiation induced mutagenesis. Report no. IAEA-CN—167. INIS 40(1):54Google Scholar
  63. Sharma R, Mishra M, Gupta B, Parsania C, Singla-Pareek SL, Pareek A (2015) de novo assembly and characterization of stress transcriptome in a salinity-tolerant variety CS52 of Brassica juncea. PLoS ONE 10(5):e0126783CrossRefGoogle Scholar
  64. Shi H, Ishitani M, Kim C, Zhu JK (2000) The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc Natl Acad Sci USA 97(12):6896–6901CrossRefGoogle Scholar
  65. Shi H, Quintero FJ, Pardo JM, Zhu JK (2002) The putative plasma membrane Na+/H+ antiporter SOS1 controls long distance Na+ transport in plants. Plant Cell 14(2):465–477CrossRefGoogle Scholar
  66. Sikder S, Qiao Y, Dong B, Shi C, Liu M (2016) Effect of water stress on leaf level gas exchange capacity and water-use efficiency of wheat cultivars. Indian J Plant Physiol 21:300–305CrossRefGoogle Scholar
  67. Singh J, Sharma PC (2016) Comparative effects of soil and water salinity on oil quality parameters of Brassica juncea. J. Oilseed Brassica 7(1):29–37Google Scholar
  68. Singh J, Sharma PC, Sharma SK, Rai M (2014) Assessing the effect of salinity on the oil quality parameters of Indian mustard (Brassica juncea L. Czern and Coss) using Fourier transform near-infrared reflectance (FT-NIR) spectroscopy. Grasas Aceites 65:e009CrossRefGoogle Scholar
  69. Singh J, Singh V, Sharma PC (2018a) Elucidating the role of osmotic, ionic and major salt responsive transcript components towards salinity tolerance in contrasting chickpea (Cicer arietinum L.) genotypes. Physiol Mol Biol Plants 24(3):441–453CrossRefGoogle Scholar
  70. Singh V, Singh AP, Bhadoria J, Giri J, Singh J, Vineeth TV, Sharma PC (2018b) Differential expression of salt-responsive genes to salinity stress in salt-tolerant and salt-sensitive rice (Oryza sativa L.) at seedling stage. Protoplasma.  https://doi.org/10.1007/s00709-018-1257-6 Google Scholar
  71. Stepien P, Johnson GN (2009) Contrasting responses of photosynthesis to salt stress in the glycophyte Arabidopsis and the halophyte Thellungiella: role of the plastid terminal oxidase as an alternative electron sink. Plant Physiol 149:1154–1165CrossRefGoogle Scholar
  72. Stoeva N, Kaymakanova M (2008) Effect of salt stress on the growth and photosynthesis rate of bean plants (Phaseolus vulgaris L.). J Cent Eur Agric 9(3):385–392Google Scholar
  73. Taji T, Seki M, Satou M, Sakurai T, Kobayashi M, Ishiyama K, Narusaka Y, Narusaka M, Zhu JK, Shinozaki K (2004) Comparative genomics in salt tolerance between Arabidopsis and aRabidopsis-related halophyte salt cress using Arabidopsis microarray. Plant Physiol 135:1697–1709CrossRefGoogle Scholar
  74. Thounaojam TC, Panda P, Mazumdar P, Kumar D, Sharma GD, Sahoo L, Panda SK (2012) Excess copper induced oxidative stress and response of antioxidants in rice. Plant Physiol Biochem 53:33–39CrossRefGoogle Scholar
  75. Wang R, Okamoto M, Xing X, Crawford NM (2003) Microarray analysis of the nitrate response in Arabidopsis roots and shoots reveals over 1000 rapidly responding genes and new linkages to glucose, trehalose-6-phosphate, ion, and sulfate metabolism. Plant Physiol 132:556–567CrossRefGoogle Scholar
  76. Wang YC, Yang CP, Liu GF, Zhang GD, Ban QY (2007) Microarray and suppression subtractive hybridization analyses of gene expression in Puccinellia tenuiflora after exposure to NaHCO3. Plant Sci 173:309–320CrossRefGoogle Scholar
  77. Yan K, Chen P, Shao H, Zhao S, Zhang L, Zhang L, Xu G, Sun J (2012) Responses of photosynthesis and photosystem II to higher temperature and salt stress in Sorghum. J Agron Crop Sci 196:218–226CrossRefGoogle Scholar
  78. Yoshimura K, Yabute Y, Ishikawa T, Shigeoka S (2000) Expression of spinach ascorbate peroxidase isoenzymes in response to oxidative stresses. Plant Physiol 123:223–233CrossRefGoogle Scholar
  79. Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6(5):441–445CrossRefGoogle Scholar
  80. Zhu J, Fu X, Koo YD, Zhu JK, Jenney FE Jr, Adams MW, Zhu Y, Shi H, Yun DJ, Hasegawa PM, Bressan RA (2007) An enhancer mutant of Arabidopsis salt overly sensitive 3 mediates both ion homeostasis and the oxidative stress response. Mol Cell Biol 27(14):5214–5224CrossRefGoogle Scholar
  81. Zobel RW, Kinraide TB, Baligar VC (2007) Fine root diameters can change in response to changes in nutrient concentrations. Plant Soil 297:243–254CrossRefGoogle Scholar

Copyright information

© Prof. H.S. Srivastava Foundation for Science and Society 2018

Authors and Affiliations

  • Jogendra Singh
    • 1
  • Vijayata Singh
    • 1
  • T. V. Vineeth
    • 1
  • Parveen Kumar
    • 1
  • Neeraj Kumar
    • 1
  • Parbodh C. Sharma
    • 1
    Email author
  1. 1.ICAR-Central Soil Salinity Research InstituteKarnalIndia

Personalised recommendations