Advertisement

Physiology and Molecular Biology of Plants

, Volume 25, Issue 1, pp 113–121 | Cite as

Analysis of bHLH coding genes of Cicer arietinum during heavy metal stress using biological network

  • Birendra Singh Yadav
  • Ashutosh ManiEmail author
Research Article
  • 37 Downloads

Abstract

bHLH family of transcription factors play important role in regulating many cellular and physiological functions in plants. These proteins are also known to be involved in response to several abiotic stress types. Cicer arietinum is an important source of protein in food across the globe. Considerable differential expression in the bHLH family of proteins during heavy metal exposure in Cicer arietinum was observed by microarray data analysis. The study aimed to construct a Pearson coefficient correlation based network of bHLH coding genes in the plant. Microarray data of Cicer arietinum recorded under cadmium and chromium stress (GSE86807) from GEO at NCBI was used for analysis. The network constructed from expression data set of the 85 bHLH coding genes revealed 10 hub genes that are connected with topological genes. These hub genes are stress responsive genes that may also be regarded as the marker genes for heavy metal response. Our analysis reported a new set of reference genes (hub genes) that have potentially significant role in development of stress tolerant crops.

Keywords

Biological network Microarray Hub genes Abiotic stress 

Notes

Acknowledgments

BSY is thankful to DST INSPIRE SRF fellowship (IF Code: IF130834). Project is not supported by any funding agency.

Supplementary material

12298_2018_625_MOESM1_ESM.xlsx (4.5 mb)
Supplementary material 1 (XLSX 4613 kb)

References

  1. Agarwal PK, Jha B (2010) Transcription factors in plants and ABA dependent and independent abiotic stress signalling. Biol Plant 54:201–212CrossRefGoogle Scholar
  2. Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410.  https://doi.org/10.1016/S0022-2836(05)80360-2 CrossRefGoogle Scholar
  3. Carretero-Paulet L, Galstyan A, Roig-Villanova I et al (2010) Genome-wide classification and evolutionary analysis of the bHLH family of transcription factors in Arabidopsis, Poplar, rice, moss, and algae. Plant Physiol 153:1398–1412.  https://doi.org/10.1104/pp.110.153593 CrossRefGoogle Scholar
  4. Castillon A, Shen H, Huq E (2007) Phytochrome interacting factors: central players in phytochrome-mediated light signaling networks. Trends Plant Sci 12:514–521CrossRefGoogle Scholar
  5. Chin C, Chen S, Wu H et al (2014) cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst Biol 8:S11.  https://doi.org/10.1186/1752-0509-8-S4-S11 CrossRefGoogle Scholar
  6. Chinnusamy V, Ohta M, Kanrar S et al (2003) ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev 17:1043–1054.  https://doi.org/10.1101/gad.1077503 CrossRefGoogle Scholar
  7. Franco-Zorrilla JM, López-Vidriero I, Carrasco JL et al (2014) DNA-binding specificities of plant transcription factors and their potential to define target genes. Proc Natl Acad Sci 111:2367–2372.  https://doi.org/10.1073/pnas.1316278111 CrossRefGoogle Scholar
  8. Friedrichsen DM, Nemhauser J, Muramitsu T et al (2002) Three redundant brassinosteroid early response genes encode putative bHLH transcription factors required for normal growth. Genetics 162:1445–1456Google Scholar
  9. Heim MA, Jakoby M, Werber M et al (2003) The basic helix-loop-helix transcription factor family in plants: a genome-wide study of protein structure and functional diversity. Mol Biol Evol 20:735–747.  https://doi.org/10.1093/molbev/msg088 CrossRefGoogle Scholar
  10. Jaillon O, Aury JM, Noel B et al (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467.  https://doi.org/10.1038/nature06148 CrossRefGoogle Scholar
  11. Kanaoka MM, Pillitteri LJ, Fujii H et al (2008) SCREAM/ICE1 and SCREAM2 specify three cell-state transitional steps leading to Arabidopsis stomatal differentiation. Plant Cell Online 20:1775–1785.  https://doi.org/10.1105/tpc.108.060848 CrossRefGoogle Scholar
  12. Kanehisa M, Furumichi M, Tanabe M et al (2017) KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res 45:D353–D361.  https://doi.org/10.1093/nar/gkw1092 CrossRefGoogle Scholar
  13. Kavar T, Maras M, Kidric M et al (2008) Identification of genes involved in the response of leaves of Phaseolus vulgaris to drought stress. Mol Breed 21:159–172.  https://doi.org/10.1007/s11032-007-9116-8 CrossRefGoogle Scholar
  14. Kazan K, Manners JM (2013) MYC2: the master in action. Mol Plant 6:686–703.  https://doi.org/10.1093/mp/sss128 CrossRefGoogle Scholar
  15. Kiribuchi K, Sugimori M, Takeda M et al (2004) RERJ1, a jasmonic acid-responsive gene from rice, encodes a basic helix-loop-helix protein. Biochem Biophys Res Commun 325:857–863.  https://doi.org/10.1016/j.bbrc.2004.10.126 CrossRefGoogle Scholar
  16. Komatsu M, Maekawa M, Shimamoto K, Kyozuka J (2001) The LAX1 and FRIZZY PANICLE 2 genes determine the inflorescence architecture of rice by controlling rachis-branch and spikelet development. Dev Biol 231:364–373.  https://doi.org/10.1006/dbio.2000.9988 CrossRefGoogle Scholar
  17. Lee S, Lee S, Yang KY et al (2006) Overexpression of PRE1 and its homologous genes activates gibberellin-dependent responses in Arabidopsis thaliana. Plant Cell Physiol 47:591–600.  https://doi.org/10.1093/pcp/pcj026 CrossRefGoogle Scholar
  18. Leivar P, Monte E, Al-Sady B et al (2008) The Arabidopsis phytochrome-interacting factor PIF7, together with PIF3 and PIF4, regulates responses to prolonged red light by modulating phyB Levels. Plant Cell Online 20:337–352.  https://doi.org/10.1105/tpc.107.052142 CrossRefGoogle Scholar
  19. Li D, Xu X, Hu X et al (2015) Genome-wide analysis and heavy metal-induced expression profiling of the HMA gene family in Populus trichocarpa. Front Plant Sci.  https://doi.org/10.3389/fpls.2015.01149 Google Scholar
  20. Ling H-Q, Bauer P, Bereczky Z et al (2002) The tomato fer gene encoding a bHLH protein controls iron-uptake responses in roots. Proc Natl Acad Sci USA 99:13938–13943.  https://doi.org/10.1073/pnas.212448699 CrossRefGoogle Scholar
  21. Littlewood TD, Evan GI (1998) Helix-loop-helix transcription factors. Oxford University Press, USAGoogle Scholar
  22. Maere S, Heymans K, Kuiper M (2005) BiNGO: a cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 21:3448–3449.  https://doi.org/10.1093/bioinformatics/bti551 CrossRefGoogle Scholar
  23. Ohashi-Ito K, Bergmann DC (2007) Regulation of the Arabidopsis root vascular initial population by LONESOME HIGHWAY. Development 134:2959–2968.  https://doi.org/10.1242/dev.006296 CrossRefGoogle Scholar
  24. Roig-Villanova I, Bou-Torrent J, Galstyan A et al (2007) Interaction of shade avoidance and auxin responses: a role for two novel atypical bHLH proteins. EMBO J 26:4756–4767.  https://doi.org/10.1038/sj.emboj.7601890 CrossRefGoogle Scholar
  25. Rushton PJ, Bokowiec MT, Han S et al (2008) Tobacco transcription factors: novel insights into transcriptional regulation in the Solanaceae. Plant Physiol 147:280–295.  https://doi.org/10.1104/pp.107.114041 CrossRefGoogle Scholar
  26. Sajeevan RS, Nataraja KN (2016) Molecular cloning and characterization of a novel basic helix-loop-helix-144 (bHLH144)-like transcription factor from Morus alba (L.). Plant Gene 5:109–117.  https://doi.org/10.1016/j.plgene.2016.01.004 CrossRefGoogle Scholar
  27. Seki M, Narusaka M, Ishida J et al (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J 31:279–292.  https://doi.org/10.1046/j.1365-313X.2002.01359.x CrossRefGoogle Scholar
  28. Shameer K, Ambika S, Varghese SM et al (2009) STIFDB-Arabidopsis stress responsive transcription factor database. Int J Plant Genomics 2009:583429.  https://doi.org/10.1155/2009/583429 CrossRefGoogle Scholar
  29. Shannon P, Markiel A, Ozier O et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504.  https://doi.org/10.1101/gr.1239303 CrossRefGoogle Scholar
  30. Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58:221–227.  https://doi.org/10.1093/jxb/erl164 CrossRefGoogle Scholar
  31. Toledo-Ortiz G (2003) The Arabidopsis basic/helix-loop-helix transcription factor family. Plant Cell Online 15:1749–1770.  https://doi.org/10.1105/tpc.013839 CrossRefGoogle Scholar
  32. Toledo-Ortiz G, Huq E, Quail PH (2003) The Arabidopsis basic/helix-loop-helix transcription factor family. Plant Cell 15:1749–1770.  https://doi.org/10.1105/tpc.013839 CrossRefGoogle Scholar
  33. Udvardi MK, Kakar K, Wandrey M et al (2007) Legume transcription factors: global regulators of plant development and response to the environment. Plant Physiol 144:538–549.  https://doi.org/10.1104/pp.107.098061 CrossRefGoogle Scholar
  34. Wu H, Chen C, Du J et al (2012) Co-overexpression FIT with AtbHLH38 or AtbHLH39 in Arabidopsis-enhanced cadmium tolerance via increased cadmium sequestration in roots and improved iron homeostasis of shoots. Plant Physiol 158:790–800.  https://doi.org/10.1104/pp.111.190983 CrossRefGoogle Scholar
  35. Xu Z, Liu X, He X et al (2017) The soybean basic helix-loop-helix transcription factor ORG3-like enhances cadmium tolerance via increased iron and reduced cadmium uptake and transport from roots to shoots. Front Plant Sci.  https://doi.org/10.3389/fpls.2017.01098 Google Scholar
  36. Yuan Y, Wu H, Wang N et al (2008) FIT interacts with AtbHLH38 and AtbHLH39 in regulating iron uptake gene expression for iron homeostasis in Arabidopsis. Cell Res 18:385–397.  https://doi.org/10.1038/cr.2008.26 CrossRefGoogle Scholar

Copyright information

© Prof. H.S. Srivastava Foundation for Science and Society 2018

Authors and Affiliations

  1. 1.Department of BiotechnologyMotilal Nehru National Institute of TechnologyAllahabadIndia

Personalised recommendations