Advertisement

Physiology and Molecular Biology of Plants

, Volume 25, Issue 1, pp 123–134 | Cite as

Validation of reference genes for qRT-PCR data normalisation in lentil (Lens culinaris) under leaf developmental stages and abiotic stresses

  • Ragini Sinha
  • T. R. Sharma
  • Anil Kumar SinghEmail author
Research Article
  • 67 Downloads

Abstract

Lentil (Lens culinaris) is one of the most important staple food crops of developing countries. Transcriptome based global gene expression profiling followed by validation of expression of important genes through quantitative real time-PCR (qRT-PCR) has achieved significance in recent years. However, there is a severe scarcity of information regarding stable reference genes in lentil, which is mandatory for qRT-PCR data normalisation. Hence, the present study was under-taken to identify the most stable reference gene(s) in lentil. Expression stability of eight candidate genes viz. ribulose 1,5-bisphosphate carboxylase large subunit (Rbcl), ribosomal protein L2 (RPL2), 18S rRNA, tubulin (Tub), elongation factor 1α (EF1α), glyceraldehydes-3-phosphate dehydrogenase (GAPDH), heat shock protein (HSP70), and Maturase (mat K) was evaluated in five varieties of lentil at three different stages of leaf development and abiotic stress conditions using qRT-PCR. The results were analysed using four types of statistical software viz., geNorm, BestKeeper, NormFinder and RefFinder; all softwares identified RPL2 as most stable under abiotic stress conditions and developmental stages followed by Tub and Rbcl; while, HSP70 was identified as least stable. Relative expression of the target genes, defensin and PR4, was evaluated under abiotic stress conditions and data normalisation was done using two stable reference genes, RPL2 and Tub, either alone or in combination and with two least stable genes, HSP70 and 18S. The present work provides a list of potential reference genes in lentil, which will help in selection of appropriate reference gene for qRT-PCR data normalization depending upon the experiment.

Keywords

Abiotic stress Gene expression Growth stages Lentil (Lens culinarisReference gene qRT-PCR 

Notes

Acknowledgements

RS acknowledges Science and Engineering Research Board, Department of Science and Technology, Government of India for the National-Postdoctoral Fellowship (PDF/2016/000924). AKS acknowledges Institute projects IXX12585 and IXX12644 funded by ICAR-Indian Institute of Agricultural Biotechnology, Ranchi. We thank Dr. Madhuparna Banerjee, Associate Professor, College of Biotechnology, Birsa Agricultural University, Ranchi for granting access to her lab facilities during the course of this study.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

12298_2018_609_MOESM1_ESM.pdf (753 kb)
Supplementary material 1 (PDF 753 kb)

References

  1. Abraham R (2015) Lentil (Lens culinaris Medikus), current status and future prospect of production in Ethiopia. Adv Plants Agric Res 2:00040Google Scholar
  2. Andersen CL, Jensen JL, Orntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64:5245–5250CrossRefGoogle Scholar
  3. Bhadauria V, Bett KE, Zhou T, Vandenberg A, Wei Y, Banniza S (2013) Identification of Lens culinaris defence genes responsive to the anthracnose pathogen Colletotrichum truncatum. BMC Genet 14:31CrossRefGoogle Scholar
  4. Bhadauria V, Vijayan P, Wei Y, Banniza S (2017) Transcriptome analysis reveals a complex interplay between resistance and effector genes during the compatible lentil-Colletotrichum lentis interaction. Sci Rep 7:42338CrossRefGoogle Scholar
  5. Borges A, Tsai SM, Gregorio D, Caldas G (2012) Validation of reference genes for RT-qPCR normalization in common bean during biotic and abiotic stresses. Plant Cell Rep 31:827–838CrossRefGoogle Scholar
  6. Bowen J, Ireland HS, Crowhurst R, Luo Z, Watson AE, Foster T et al (2014) Selection of low-variance expressed Malus × domestica (apple) genes for use as quantitative PCR reference genes (housekeepers). Tree Genet Genomes 10:751–759CrossRefGoogle Scholar
  7. Bustin SA (2002) Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J Mol Endocrinol 29:23–39CrossRefGoogle Scholar
  8. Bustin SA, Benes V, Nolan T, Pfaffl MW (2005) Quantitative real-time RT-PCR-a perspective. J Mol Endocrinol 34:597–601CrossRefGoogle Scholar
  9. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M et al (2009) The MIQE guidelines: minimum Information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622CrossRefGoogle Scholar
  10. Chandna R, Augustine R, Bisht NC (2012) Evaluation of candidate reference genes for gene expression normalization in Brassica juncea using real time quantitative RT-PCR. PLoS ONE 7:e36918CrossRefGoogle Scholar
  11. Chen D, Pan X, Xiao P, Farwell MA, Zhang B (2011a) Evaluation and identification of reliable reference genes for pharmacogenomics, toxicogenomics, and small RNA expression analysis. J Cell Physiol 226:2469–2477CrossRefGoogle Scholar
  12. Chen L, Zhong HY, Kuang JF, Li JG, Lu WJ, Chen JY (2011b) Validation of reference gene for RT-qPCR studies of gene expression in banana fruit under different experimental conditions. Planta 234:377–390CrossRefGoogle Scholar
  13. Chi C, Shen Y, Yin L, Ke X, Han D, Zuo Y (2016) Selection and validation of reference genes for gene expression analysis in Vigna angularis using quantitative real-time RT-PCR. PLoS ONE 11:e0168479CrossRefGoogle Scholar
  14. Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible WR (2005) Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol 139:5–17CrossRefGoogle Scholar
  15. de Jonge HJM, Fehrmann RSN, de Bont ESJM, Hofstra RMW, Gerbens F et al (2007) Evidence based selection of housekeeping genes. PLoS ONE 2:e898CrossRefGoogle Scholar
  16. Die JV, Roman B, Nadal S, Gonzalez-Verdejo C (2010) Evaluation of candidate reference genes for expression studies in Pisum sativum under different experimental conditions. Planta 232:145–153CrossRefGoogle Scholar
  17. Duhoux A, Délye C (2013) Reference genes to study herbicide stress response in Lolium sp. up-regulation of P450 genes in plants resistant to acetolactate-synthase inhibitors. PLoS ONE 8:e63576CrossRefGoogle Scholar
  18. Erskine W, Muehlbauer FJ, Short RW (1990) Stages of development in lentil. Exp Agric 26:297–302CrossRefGoogle Scholar
  19. Erskine W, Sarker A, Kumar S (2011) Crops that feed the world. Investing in lentil improvement toward a food secure world. Food Secur 3:127–139CrossRefGoogle Scholar
  20. Eujayl I, Baum M, Powell W, Erskine W, Pehu E (1998) A genetic linkage map of lentil (Lens sp.) based on RAPD and AFLP markers using recombinant inbred lines. Theor Appl Genet 97:83–89CrossRefGoogle Scholar
  21. Ford R, Mustafa B, Sambasivam P, Baum M, Rajesh PN (2011) Biotechnology and gene mapping in lentil. Grain Legumes 57:21–24Google Scholar
  22. Gachon C, Mingam A, Charrier B (2004) Real-time PCR: what relevance to plant studies? J Exp Bot 55:1445–1454CrossRefGoogle Scholar
  23. Gao M, Liu Y, Ma X, Shuai Q, Gai J, Li Y (2017) Evaluation of reference genes for normalization of gene expression using quantitative RT-PCR under aluminium, cadmium, and heat stresses in soybean. PLoS ONE 12:e0168965CrossRefGoogle Scholar
  24. Garg R, Sahoo A, Tyagi AK, Jain M (2010) Validation of internal control genes for quantitative gene expression studies in chickpea (Cicer arietinum L.). Biochem Biophy Res Commun 396:283–288CrossRefGoogle Scholar
  25. Ghawana S, Paul A, Kumar H, Kumar A, Singh H, Bhardwaj PK et al (2011) An RNA isolation system for plant tissues rich in secondary metabolites. BMC Res Notes 4:85–89CrossRefGoogle Scholar
  26. Greer S, Honeywell R, Geletu M, Arulanandam R, Raptis L (2010) Housekeeping genes; expression levels may change with density of cultured cells. J Immunol Methods 355:76–79CrossRefGoogle Scholar
  27. Grusak MA, Coyne CJ (2009) Variation for seed minerals and protein concentration in diverse germplasm of lentil. Paper presented at North American Pulse Improvement Association, 20th biennial meeting (Fort Collins, CO), vol 11Google Scholar
  28. Guenin S, Mauriat M, Pelloux J, Wuytswinkel OV, Bellini C, Gutierrez L (2009) Normalization of qRT-PCR data: the necessity of adopting a systematic, experimental conditions-specific, validation of references. J Exp Bot 60:487–493CrossRefGoogle Scholar
  29. Gutierrez L, Mauriat M, Pelloux J, Bellini C, Van Wuytswinkel O (2008) Towards a systematic validation of references in real-time RT-PCR. Plant Cell 20:1734–1735CrossRefGoogle Scholar
  30. Gutierrez N, Gimenez MJ, Palomino C, Avila CM (2011) Assessment of candidate reference genes for expression studies in Vicia faba L. by real-time quantitative PCR. Mol Breed 28:13–24CrossRefGoogle Scholar
  31. Hamwieh A, Udupa SM, Choumane W, Sarker A, Dreyer F, Jung C et al (2005) A genetic linkage map of Lens spp. based on microsatellite and AFLP markers and the localization of Fusarium vascular wilt resistance. Theor Appl Genet 110:669–677CrossRefGoogle Scholar
  32. He M, Cui S, Yang X, Mu G, Chen H, Liu L (2017) Selection of suitable reference genes for abiotic stress-responsive gene expression studies in peanut by real-time quantitative PCR. Electron J Biotechnol 28:76–86CrossRefGoogle Scholar
  33. Hsiao LL, Dangond F, Yoshida T, Hong R, Jensen RV, Misra J et al (2001) A compendium of gene expression in normal human tissues. Physiol Genomics 7:97–104CrossRefGoogle Scholar
  34. Hu R, Fan C, Li H, Zhang Q, Fu YF (2009) Evaluation of putative reference genes for gene expression normalization in soybean by quantitative real-time RT-PCR. BMC Mol Biol 10:93CrossRefGoogle Scholar
  35. Huggett J, Dheda K, Bustin S, Zumla A (2005) Real-time RT-PCR normalisation; strategies and considerations. Genes Immun 6:279–284CrossRefGoogle Scholar
  36. Idrissi O, Udupa SM, De Keyser E, McGee RJ, Coyne CJ, Saha GC et al (2016) Identification of quantitative trait loci controlling root and shoot traits associated with drought tolerance in a Lentil (Lens culinaris Medik.) recombinant inbred line population. Front. Plant Sci 7:1174Google Scholar
  37. Jain M, Nijhawan A, Tyagi AK, Khurana JP (2006) Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochem Biophys Res Commun 345:646–651CrossRefGoogle Scholar
  38. Jian B, Liu B, Bi Y, Hou W, Wu C et al (2008) Validation of internal control for gene expression study in soybean by quantitative real-time PCR. BMC Mol Biol 9:59CrossRefGoogle Scholar
  39. Kakar K, Wandrey M, Czehowski T, Gaertner T, Scheible W-R, Stitt M et al (2008) A community resource for high-throughput quantitative RT-PCR analysis of transcription factor gene expression in Medicago truncatula. Plant Methods 4:18CrossRefGoogle Scholar
  40. Kim BR, Nam HY, Kim SU, Kim SI, Chang YJ (2003) Normalization of reverse transcription quantitative-PCR with housekeeping genes in rice. Biotechnol Lett 25:1869–1872CrossRefGoogle Scholar
  41. Kumar G, Singh AK (2015) Reference gene validation for qRT-PCR based gene expression studies in different development stages and under biotic stress in apple. Sci Hortic 197:597–606CrossRefGoogle Scholar
  42. Le DT, Aldrich DL, Valliyodan B, Watanabe Y, Ha CV et al (2012) Evaluation of candidate reference genes for normalization of Quantitative RT-PCR in soybean tissues under various abiotic stress conditions. PLoS ONE 7:e46487CrossRefGoogle Scholar
  43. Libault M, Thibivilliers S, Bilgin DD, Radwan O, Benitez M et al (2008) Identification of four soybean reference genes for gene expression normalization. Plant Genome 1:44–54CrossRefGoogle Scholar
  44. Lin F, Jiang L, Liu Y, Lv Y, Dai H, Zhao H (2014) Genome wide identification of housekeeping genes in maize. Plant Mol Biol 86:543–554CrossRefGoogle Scholar
  45. Liu C, Wu G, Huang X, Liu S, Cong B (2012) Validation of housekeeping genes for gene expression studies in an ice alga Chlamydomonas during freezing acclimation. Extremophiles 16:419–425CrossRefGoogle Scholar
  46. Liu LL, Zhao H, MaTF GF, Chen CS, Zhang YP (2015) Identification of valid reference genes for the normalization of RT-qPCR expression studies in human breast cancer cell lines treated with and without transient transfection. PLoS ONE 10:e0117058CrossRefGoogle Scholar
  47. Ma S, Niu H, Liu C, Zhang J, Hou C et al (2013) Expression stabilities of candidate reference genes for RT-qPCR under different stress conditions in soybean. PLoS ONE 8:e75271CrossRefGoogle Scholar
  48. Mayer MP, Bukau B (2005) HSP70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci 62:670–684CrossRefGoogle Scholar
  49. Musculo A, Junker A, Klukas C, Weigelt-Fischer K, Riewe D, Altmann T (2015) Phenotypic and metabolic responses to drought and salinity of four contrasting lentil accessions. J Exp Bot 66:5467–5480CrossRefGoogle Scholar
  50. Mustafa BM, Coram TE, Panga ECK, Taylor PWJ, Ford R (2009) A cDNA microarray approach to decipher lentil (Lens culinaris) responses to Ascochyta lentis. Aust Plant Pathol 38:617–631CrossRefGoogle Scholar
  51. Nicot N, Ausman J-F, Hoffmann L, Evers D (2005) Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. J Exp Bot 56:2907–2914CrossRefGoogle Scholar
  52. Nolan T, Hands RE, Bustin SA (2006) Quantification of mRNA using real-time PCR. Nat Protoc 1:1559–1582CrossRefGoogle Scholar
  53. Park CJ, Seo YS (2015) Heat shock proteins: a review of the molecular chaperones for plant immunity. Plant Pathol J 31:323–333CrossRefGoogle Scholar
  54. Perini P, Pasquali G, Margis-Pinheiro M, Dias de Oliviera PR, Revers LF (2014) Reference genes for transcriptional analysis of flowering and fruit ripening stages in apple (Malus × domestica Borkh). Mol. Breed 34:829–842CrossRefGoogle Scholar
  55. Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acid Res 30:e36CrossRefGoogle Scholar
  56. Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper- excel-based tool using pair-wise correlations. Biotechnol Lett 26:509–515CrossRefGoogle Scholar
  57. Radonic A, Thulke S, Mackay IM, Landt O, Siegert W, Nitsche A (2004) Guideline to reference gene selection for quantitative real-time PCR. Biochem Biophys Res Commun 313:856–862CrossRefGoogle Scholar
  58. Reddy DS, Bhatnagar-Mathur P, Reddy PS, Sri CK, Sivaji GA, Sharma KK (2016) Identification and validation of reference genes and their impact on normalized gene expression studies across cultivated and wild Cicer species. PLoS ONE 11:e0148451CrossRefGoogle Scholar
  59. Remans T, Smeets K, Opdenakker K, Mathijsen D, Vangronsveld J, Cuypers A (2008) Normalization of real-time RT-PCR gene expression measurements in Arabidopsis thaliana exposed to increased metal concentrations. Planta 227:1343–1349CrossRefGoogle Scholar
  60. Ruan W, Lai M (2007) Actin, a reliable marker of internal control? Clin Chim Acta 385:1–5CrossRefGoogle Scholar
  61. Rubeen A, Ford R, Taylor PWJ (2003) Construction of an intraspecific linkage map of lentil (Lens culinaris ssp. culinaris). Theor Appl Genet 107:910–916CrossRefGoogle Scholar
  62. Saha GC, Vandemark GJ (2013) Stability of expression of reference genes among different lentil (Lens culinaris) genotypes subjected to cold stress, white mold disease, and Aphanomyces root rot. Plant Mol Biol Rep 31:1109–1115CrossRefGoogle Scholar
  63. Saha GC, Sarker A, Chen WD, Vandemark GJ, Muehlbauer FJ (2010) Identification of markers associated with genes for rust resistance in Lens culinaris Medik. Euphytica 175:261–265CrossRefGoogle Scholar
  64. Seferoglu AB, Baris I, Morgil H, Tulum I, Ozdas S, Cevarih G et al (2013) Transcriptional regulation of the ADP-glucose pyrophosphorylase isoforms in the leaf and the stem under long and short photoperiod in lentil. Plant Sci 205–206:29–37CrossRefGoogle Scholar
  65. Sels J, Mathys J, De Coninck BM, Cammue BP, De Bolle MF (2008) Plant pathogenesis related (PR) proteins: a focus on PR peptides. Plant Physiol Biochem 46:941–950CrossRefGoogle Scholar
  66. Selvey S, Thompson EW, Matthaei K, Lea RA, Irving MG, Griffiths LR (2001) Beta-actin an unsuitable internal control for RT-PCR. Mol Cell Probes 15:307–311CrossRefGoogle Scholar
  67. Sharpe AG, Ramsay L, Sanderson LA, Fedoruk MJ, Clarke WE, Li R et al (2013) Ancient orphan crop joins modern era: gene-based SNP discovery and mapping in lentil. BMC Genom 14:192CrossRefGoogle Scholar
  68. Singh D, Singh CK, Taunk J, Tomar RSS, Chaturvedi AK, Gaikwad K et al (2017) Transcriptome analysis of lentil (Lens culinaris) in response to seedling drought stress. BMC Genom 18:206CrossRefGoogle Scholar
  69. Sinha P, Saxena RK, Singh VK, Krishnamurthy L, Varshney RK (2015a) Selection and validation of housekeeping genes as reference for gene expression studies in pigeon pea (Cajanus cajan) under heat and salt stress conditions. Front Plant Sci 6:1071Google Scholar
  70. Sinha P, Singh VK, Suryanarayana V, Krishnamurthy L, Saxena RK, Varshney RK (2015b) Evaluation and validation of housekeeping genes as reference for gene expression studies in pigeon pea (Cajanus cajan) under drought stress conditions. PLoS ONE 10:e0122847CrossRefGoogle Scholar
  71. Stolf-Moreira R, Lemos EGM, Abdelnoor RV, Beneventi MA, Rolla AAP et al (2011) Identification of reference genes for expression analysis by real-time quantitative PCR in drought-stressed soybean. Pesqui Agropecu Bras 46:58–65CrossRefGoogle Scholar
  72. Sudheesh S, Verma P, Forster JW, Cogan NOI, Kaur S (2016) Generation and characterisation of a reference transcriptome for lentil (Lens culinaris Medik). Int J Mol Sci 17:1887CrossRefGoogle Scholar
  73. Suzuki T, Higgins PJ, Crawford DR (2009) Control selection for RNA quantitation. Biotechniques 29:332–337CrossRefGoogle Scholar
  74. Tenea GN, Bota AP, Raposo FC, Maquet A (2011) Reference gene for gene expression studies in wheat flag leaves grown under different farming conditions. BMC Res Notes 4:373CrossRefGoogle Scholar
  75. Thavarajah D, Thavarajah P, Sarker A, Materne M, Vandemark G, Shrestha R et al (2011) A global survey of effects of genotype environment on selenium concentration in lentils (Lens culinaris L.): implications for nutritional fortification strategies. Food Chem 125:72–76CrossRefGoogle Scholar
  76. Thellin O, Zorzi W, Lakaye B, De Borman B, Coumans B, Henne G et al (1999) Housekeeping genes as internal standards: use and limits. J Biotechnol 75:197–200CrossRefGoogle Scholar
  77. Thorrez L, Van Deun K, Tranchevent LC, Van Lommel L, Engelen K, Marchal K et al (2008) Using ribosomal protein genes as reference: a tale of caution. PLoS ONE 3:e1854CrossRefGoogle Scholar
  78. Tong Z, Gao Z, Wang F, Zhou J, Zhang Z (2009) Selection of reliable reference genes for gene expression studies in peach using real-time PCR. BMC Mol Biol 10:71CrossRefGoogle Scholar
  79. Tricarico C, Pinzani P, Bianchi S, Paglierani M, Distante V et al (2002) Quantitative real-time reverse transcription polymerase chain reaction: normalization to rRNA or single housekeeping genes is inappropriate for human tissue biopsies. Anal Biochem 309:293–300CrossRefGoogle Scholar
  80. Udvardi MK, Czechowski T, Scheible W-R (2008) Eleven golden rules of quantitative RT-PCR. Plant Cell 20:1736–1737CrossRefGoogle Scholar
  81. Vaghefi N, Mustafa BM, Dulal N, Selby-Pham J, Taylor PWJ, Ford R (2013) A novel pathogenesis-related protein (LcPR4a) from lentil, and its involvement in defence against Ascochyta lentis. Phytopathol Med 52:192–201Google Scholar
  82. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van-Roy N, De Paepe A et al (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:Research0034CrossRefGoogle Scholar
  83. Walker NJ (2002) Tech. sight. A technique whose time has come. Science 296:557–559CrossRefGoogle Scholar
  84. Wang Z, Chen Y, Fang H, Shi H, Chen K, Zhang Z, Tan X (2014) Selection of reference genes for quantitative reverse transcription polymerase chain reaction normalization in Brassica napus under various stress conditions. Mol Genet Genomics 289:1023–1035CrossRefGoogle Scholar
  85. Xie F, Xiao P, Chen D, Xu L, Zhang B (2012) miR DeepFinder: a miRNA analysis tool for deep sequencing of plant small RNAs. Plant Mol Biol 80(1):75–84CrossRefGoogle Scholar
  86. Yim AK-Y, Wong JW-H, Ku Y-S, Qin H, Chan T-F, Lam H-M (2015) Using RNA-seq data to evaluate reference genes suitable for gene expression studies in soybean. PLoS ONE 10:e0136343CrossRefGoogle Scholar
  87. Zhu X, Li X, Chen W, Chen J, Lu W, Chen L, Fu D (2012) Evaluation of new reference genes in papaya for accurate transcript normalization under different experimental conditions. PLoS ONE 7:e44405CrossRefGoogle Scholar

Copyright information

© Prof. H.S. Srivastava Foundation for Science and Society 2018

Authors and Affiliations

  1. 1.ICAR-Indian Institute of Agricultural BiotechnologyGarhkhatanga, RanchiIndia

Personalised recommendations